




Table of Contents
ASP.NET jQuery Cookbook Second Edition
Credits
About the Author
About the Reviewer
www.PacktPub.com

eBooks, discount offers, and more
Preface

What this book covers
What you need for this book
Who this book is for
Sections

Getting ready
How to do it…
How it works…
There's more…
See also

Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Getting Started with jQuery in ASP.NET
Introduction
Downloading jQuery from jQuery.com

Getting ready
How to do it…
See also…

Understanding CDN for jQuery
How to do it…

Using CDNs for new releases



How it works…
See also

Using NuGet Package Manager to download jQuery
Getting ready
How to do it…
How it works…
See also

Adding jQuery to an empty ASP.NET web project using a script
block

Getting ready
How to do it…
See also

Adding jQuery to an empty ASP.NET web project using
ScriptManager control

Getting ready
How to do it…
How it works…
See also

Adding jQuery to an ASP.NET Master Page
Getting ready
How to do it…
How it works…
See also

Adding jQuery programmatically to a web form
Getting ready
How to do it…
How it works…
See also

Understanding jQuery reference in the default web application
template

How to do it...
How it works…
See also

Hello World in a web project using jQuery
Getting ready
How to do it…
How it works…



See also
Bundling jQuery in ASP.NET MVC

Getting ready
How to do it…
How it works…
See also

Using CDN to load jQuery in MVC
Getting ready
How to do it…
How it works…
See also

Hello World in ASP.NET MVC using jQuery
Getting ready
How to do it…
How it works…
See also

Debugging jQuery code in Visual Studio
Getting ready
How to do it…
See also

2. Using jQuery Selectors with ASP.NET Controls
Introduction
Selecting a control using ID and displaying its value

Getting ready
How to do it…
How it works…
See also

Selecting a control using the CSS class
Getting ready
How to do it…
How it works…
See also

Selecting a control using HTML tag
Getting ready
How to do it…
How it works…
See also



Selecting a control by its attribute
Getting ready
How to do it…
How it works…
See also

Selecting an element by its position in the DOM
Getting ready
How to do it…
How it works…
See also

Enabling/disabling controls on a web form
Getting ready
How to do it…
How it works…
See also

Using selectors in MVC applications
Getting ready
How to do it…
How it works…
See also

3. Event Handling Using jQuery
Introduction

jQuery event binders
Responding to mouse events

Getting ready
How to do it…
How it works…
See also

Responding to keyboard events
Getting ready
How to do it…
How it works…
See also

Responding to form events
Getting ready
How to do it…
How it works…



See also
Using event delegation to attach events to future controls

Getting ready
How to do it…
How it works…
See also

Running an event only once
Getting ready
How to do it…
How it works…
See also

Triggering an event programmatically
Getting ready
How to do it…
How it works…
See also

Passing data with events and using event namespacing
Getting ready
How to do it…
How it works…
See also

Detaching events
Getting ready
How to do it…
How it works…
See also

4. DOM Traversal and Manipulation in ASP.NET
Introduction
Adding/removing DOM elements

Getting ready
How to do it…
How it works…
See also

Accessing parent and child controls
Getting ready
How to do it…
How it works…



See also
Accessing sibling controls

Getting ready
How to do it…
How it works…
There's more…
See also

Refining selection using a filter
Getting ready
How to do it…
How it works…
There's more…
See also

Adding items to controls at runtime
Getting ready
How to do it…
How it works…
See also

5. Visual Effects in ASP.NET Sites
Introduction
Animating the Menu control

Getting ready
How to do it…
How it works…
See also

Animating a Label control to create a digital clock
Getting ready
How to do it…
How it works…
See also

Animating the alt text of the AdRotator control
Getting ready
How to do it…
How it works…
There's more…
See also

Animating images in the TreeView control



Getting ready
How to do it…
How it works…
There's more…
See also

Creating scrolling text in a Panel control
Getting ready
How to do it…
How it works…
See also

Creating a vertical accordion menu using Panel controls
Getting ready
How to do it…
How it works…
See also

Showing/hiding the GridView control with the explode effect
Getting ready
How to do it…
How it works…
See also

6. Working with Graphics in ASP.NET Sites
Introduction
Creating a spotlight effect on images

Getting ready
How to do it…
How it works…
See also

Zooming images on mouseover
Getting ready
How to do it…
How it works…
See also

Creating an image scroller
Getting ready
How to do it…
How it works…
See also



Building a photo gallery using z-index property
Getting ready
How to do it…
How it works…
See also

Building a photo gallery using ImageMap control
Getting ready
How to do it…
How it works…
See also

Using images to create effects in the Menu control
Getting ready
How to do it…
How it works…
See also

Creating a 5 star rating control
Getting ready
How to do it…
How it works…
There's more…
See also

Previewing image uploads in MVC
Getting ready
How to do it…
How it works…
See also

7. Ajax Using jQuery
Introduction
Setting up Ajax with ASP.NET using jQuery

Getting ready
How to do it…
How it works…
There's more…
See also

Consuming page methods
Getting ready
How to do it…



How it works…
See also

Consuming Web services
Getting ready
How to do it…
How it works…
See also

Consuming WCF services
Getting ready
How to do it…
How it works…
See also

Retrieving data from a Web API
Getting ready
How to do it…
How it works…
See also

Making Ajax calls to a controller action
Getting ready
How to do it…
How it works…
See also

Making Ajax calls to a HTTP handler
Getting ready
How to do it…
How it works…
See also

8. Creating and Using jQuery Plugins
Introduction
Creating and using a simple plugin

Getting ready
How to do it…
How it works…
See also

Using the $ alias in the plugin
Getting ready
How to do it…



How it works…
There's more
See also

Calling methods on DOM elements
Getting ready
How to do it…
How it works…
There's more…
See also

Providing default values
Getting ready
How to do it…
How it works…
There's more…
See also

Providing method chaining
Getting ready
How to do it…
How it works…
See also

Adding actions to plugins
Getting ready
How to do it…
How it works…
See also

Using the form validation plugin
Getting ready
How to do it…
How it works…
There's more…
See also

Downloading plugins using the NPM
Getting ready
How to do it…
How it works…
See also

Index



ASP.NET jQuery Cookbook
Second Edition



ASP.NET jQuery Cookbook
Second Edition
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: April 2011

Second edition: February 2016

Production reference: 1220216

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.



ISBN 978-1-78217-311-3

www.packtpub.com

http://www.packtpub.com/


Credits
Author

Sonal Aneel Allana

Reviewer

Ayad Boudiab

Commissioning Editor

Dipika Gaonkar

Acquisition Editor

Divya Poojari

Content Development Editor

Priyanka Mehta

Technical Editors

Dhiraj Chandanshive

Devesh Chugh

Copy Editor

Rashmi Sawant

Project Coordinator

Izzat Contractor

Proofreader



Safis Editing

Indexer

Priya Sane

Graphics

Jason Monteiro

Production Coordinator

Shantanu N. Zagade

Cover Work

Shantanu N. Zagade



About the Author
Sonal Aneel Allana works as a sessional lecturer at the Singapore
campus of the University of Newcastle and the University of
Hertfordshire. Her teaching areas include degree level courses in e-
learning, intelligent systems, robotics, operating systems, and
programming in C/C++, .NET, Java, and Android. She is keenly
interested in JavaScript frameworks, such as Bootstrap, Node.js,
and AngularJS. She has worked in the IT industry for over 10 years
in various positions, such as an application developer, project leader,
and trainer. She holds a master's degree in computing from the
National University of Singapore and a bachelor's degree in
computer engineering from the University of Mumbai. She is certified
in security technology and computational neuroscience. She is also
the author of the first edition of ASP.NET jQuery Cookbook.

I have enjoyed the journey of writing this book. The process of
discovering the magic of jQuery has been enlightening and
enthralling. I would like to thank my readers for their valuable
feedback that I have incorporated in this edition.

This journey would not be possible without the support of my
lovely family. Heartfelt thanks to everyone, especially to my
parents, my husband, Aneel, and little, Abraham.

Thanks to the excellent team at Packt and to Priyanka for
keeping me going. Special thanks to my reviewer, Ayad Boudiab,
for his critical analysis of the material and for providing me
valuable insights.



About the Reviewer
Ayad Boudiab is a senior software engineer. He has more than 17
years of experience in application development on Windows
platforms. He works across multiple technologies in the .NET stack.
In addition to his corporate experience, he has more than 20 years of
experience in technical training and teaching. He has taught multiple
courses in colleges and online. He has most recently worked with
C#, JavaScript, jQuery, ASP.NET, Knockout JS, Angular JS, Kendo
UI, HTML5, and SQL Server. You can contact him at
<ayad.boudiab@gmail.com>.

Ayad is currently a contractor for a healthcare company in Atlanta.
He has reviewed many IT books and written supplements for Wiley,
Pearson, nSight, Prentice Hall, among other publishers.

mailto:ayad.boudiab@gmail.com


www.PacktPub.com

eBooks, discount offers, and
more
Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in
touch with us at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is
Packt's online digital book library. Here, you can search, access, and
read Packt's entire library of books.

Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.packtpub.com/
mailto:customercare@packtpub.com
http://www.packtpub.com/
https://www2.packtpub.com/books/subscription/packtlib


Preface
jQuery is a lightweight JavaScript library that has changed the
landscape of client scripting in web applications. Developed by John
Resig in 2006, it has taken the Web by storm because of its cross-
browser compatibility and its ability to get more done with less code.
The library is supported by an active community of developers and
has grown significantly over the years. Using jQuery eases many
client scripting tasks, such as event handling, embedding
animations, writing Ajax enabled pages, among many more, and
adds to the interactive experience of the end user. Its extensible
plugin architecture enables developers to build additional
functionalities on top of the core library.

Learning jQuery and using it in ASP.NET applications is an
indispensable skill for ASP.NET developers. This book attempts to
impart this skill by exploring diverse recipes for fast and easy
solutions to some of the commonly encountered problems in
ASP.NET 4.6 applications.



What this book covers
Chapter 1, Getting Started with jQuery in ASP.NET, describes
recipes to download and include jQuery in ASP.NET 4.6 Web and
MVC applications. It discusses the CDN, NuGet Package Manager,
as well as debugging the jQuery code in Visual Studio.

Chapter 2, Using jQuery Selectors with ASP.NET Controls, describes
various jQuery selectors that can be used to manipulate ASP.NET
controls. These selectors can select controls based on the ID, CSS
class, HTML tag, attribute, or position in the document.

Chapter 3, Event Handling Using jQuery, describes recipes to handle
different types of events, such as mouse, keyboard, and form
events. It also explains event delegation and detaching of events.

Chapter 4, DOM Traversal and Manipulation in ASP.NET, describes
techniques to traverse the document, such as accessing parent,
child, or sibling elements. It also teaches manipulation strategies to
add and remove elements at runtime.

Chapter 5, Visual Effects in ASP.NET Sites, discusses recipes to
create different types of animation effects on ASP.NET controls, such
as Panel, AdRotator, TreeView, Menu, and GridView. Effects such as
enlarging, sliding, and fading are covered in this chapter.

Chapter 6, Working with Graphics in ASP.NET Sites, discusses
recipes to work with images and explains effects, such as zooming,
scrolling, and fading on images. Utilities such as image gallery,
image preview, and 5-star rating control are also explored in this
chapter.

Chapter 7, Ajax Using jQuery, explains how Ajax calls can be made
to page methods, web services, WCF services, Web API, MVC
controllers, and HTTP handlers.



Chapter 8, Creating and Using jQuery Plugins, demonstrates how
plugins can be created and included in projects. It also describes
how to use the Node Package Manager (NPM) and Bower to
download and manage third-party plugins.

Chapter 9, Useful jQuery Recipes for ASP.NET Sites, summarizes
the book with diverse recipes to solve common real-world problems.
You can find this chapter at:
https://www.packtpub.com/sites/default/files/downloads/4836OT_Ch
apter_09.

https://www.packtpub.com/sites/default/files/downloads/4836OT_Chapter_09


What you need for this book
To work with the examples of this book, you will need the following:

Visual Studio 2015
MS SQL Server 2014
The Northwind database
The jQuery library
The jQuery UI library
A web browser
The Node Package Manager (NPM)
Bower

Some recipes also require the use of third-party jQuery plugins, such
as validation and cycle plugins.



Who this book is for
This book is for ASP.NET developers who want to use jQuery to
write client scripts for cross-browser compatibility. No prior
knowledge of ASP.NET or jQuery is expected, and every recipe is
self-contained and explained in an easy-to-follow manner. The code
samples in this book are provided in both C# and VB. Familiarity with
Visual Studio and MS SQL Server is preferred, but not compulsory.



Sections
In this book, you will find several headings that appear frequently
(Getting ready, How to do it..., How it works..., There's more..., and
See also).

To give clear instructions on how to complete a recipe, we use these
sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes
how to set up any software or any preliminary settings required for
the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what
happened in the previous section.

There's more…
This section consists of additional information about the recipe in
order to make the reader more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the
recipe.



Conventions
In this book, you will find a number of text styles that distinguish
between different kinds of information. Here are some examples of
these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter
handles are shown as follows: "On the download page, there is also
a map file available with the .min.map extension. Sometimes, when
bugs appear in the production environment necessitating
troubleshooting, the use of the minified file for debugging can be
difficult."

A block of code is set as follows:

Sub Application_Start(ByVal sender As Object, 

ByVal e As EventArgs) 

  

ScriptManager.ScriptResourceMapping.AddDefinition(

"jquery", New ScriptResourceDefinition() With { 

  .Path = "~/Scripts/jquery-2.1.4.min.js", 

  .DebugPath = "~/Scripts/jquery-2.1.4.js", 

  .CdnPath = 

"https://ajax.googleapis.com/ajax/libs/jquery/2.1.

4/jquery.min.js", 

  .CdnDebugPath = 

"https://ajax.googleapis.com/ajax/libs/jquery/2.1.

4/jquery.js", 

  .CdnSupportsSecureConnection = True, 

  .LoadSuccessExpression = "window.jQuery"}) 

End Sub

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:

<asp:ScriptManager ID="ScriptManager1" 

runat="server" EnableCdn="true"> 

  <Scripts> 

    <asp:ScriptReference Name="jquery"  /> 



    </Scripts> 

</asp:ScriptManager>

Any command-line input or output is written as follows:

bower install jquery-validation

New terms and important words are shown in bold. Words that you
see on the screen, for example, in menus or dialog boxes, appear in
the text like this: "Click on the Download jQuery button (highlighted
in the preceding screenshot) on the right-hand side of the page. This
opens up the download page with the list of available files."

Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.



Reader feedback
Feedback from our readers is always welcome. Let us know what
you think about this book—what you liked or disliked. Reader
feedback is important for us as it helps us develop titles that you will
really get the most out of.

To send us general feedback, simply e-mail
<feedback@packtpub.com>, and mention the book's title in the subject
of your message.

If there is a topic that you have expertise in and you are interested in
either writing or contributing to a book, see our author guide at
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors


Customer support
Now that you are the proud owner of a Packt book, we have a
number of things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and
password.

2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code

files.
6. Choose from the drop-down menu where you purchased this

book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

Downloading the color images of this
book

http://www.packtpub.com/
http://www.packtpub.com/support


We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help
you better understand the changes in the output. You can download
this file from
https://www.packtpub.com/sites/default/files/downloads/ASPNET_jQ
uery_Cookbook_Second_Edition_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you find a mistake in one of our
books – maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that
title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the
name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem
across all media. At Packt, we take the protection of our copyright
and licenses very seriously. If you come across any illegal copies of
our works in any form on the Internet, please provide us with the
location address or website name immediately so that we can
pursue a remedy.

https://www.packtpub.com/sites/default/files/downloads/ASPNET_jQuery_Cookbook_Second_Edition_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Please contact us at <copyright@packtpub.com> with a link to the
suspected pirated material.

We appreciate your help in protecting our authors and our ability to
bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact
us at <questions@packtpub.com>, and we will do our best to address
the problem.

mailto:copyright@packtpub.com
mailto:questions@packtpub.com


Chapter 1. Getting Started with
jQuery in ASP.NET
In this chapter, we will cover the following recipes:

Downloading jQuery from jQuery.com
Understanding CDN for jQuery
Using the NuGet Package Manager to download jQuery
Adding jQuery to an empty ASP.NET web project using a script
block
Adding jQuery to an empty ASP.NET web project using the
ScriptManager control
Adding jQuery to an ASP.NET Master Page
Adding jQuery programmatically to a web form
Understanding the jQuery reference in the default Web
Application template
Hello World in a web project using jQuery
Bundling jQuery in ASP.NET MVC
Using a CDN to load jQuery in MVC
Hello World in ASP.NET MVC using jQuery
Debugging jQuery code in Visual Studio

Introduction
As a web developer, you often require to include functionalities in
your websites that make writing a client script in JavaScript
inevitable. Getting the client script to produce the same response for
all browsers has always been a challenge. jQuery helps you
overcome this difficulty. In essence, jQuery is a powerful JavaScript
library that works across all browsers, such as Internet Explorer (IE),
Firefox, Safari, Chrome, Opera, iOS, and Android. It takes away the
agony that developers face in order to maintain their client scripts
across different platforms.

http://jquery.com/


jQuery is popular not only because of its cross-browser support, but
also because it is packed with features that developers can plug and
play. It has changed the way developers write a client script. In
addition to reducing the amount of code that needs to be written, it
provides features for traversing the DOM, event handling, building
animations, and AJAX, among many more.

This chapter deals with acquiring the library and other supporting
files. It aims to cover different aspects of including and using jQuery
in ASP.NET 4.6 web application projects, such as web forms and
MVCs.

Note
This book is based on Visual Studio 2015 and jQuery 2.1.4. The
scripts have been tested in Internet Explorer 11.0.96, Mozilla
Firefox 38.0.1, and Google Chrome 47.0.2526.

If you are familiar with downloading and including jQuery in your
ASP.NET applications, you can skip this chapter and move on to
recipes for manipulating controls in Chapter 2, Using jQuery
Selectors with ASP.NET Controls.



Downloading jQuery from
jQuery.com
This recipe explains how to download jQuery on your system along
with the version/build to use and the supporting files that are
required.

Getting ready
Following are the steps to download jQuery:

1. Launch any web browser and enter the URL
http://www.jquery.com to access the jQuery home page:

2. Click on the Download jQuery button (highlighted in the
preceding screenshot) on the right-hand side of the page. This
opens up the download page with a list of available files, as
shown in the following screenshot:

http://www.jquery.com/


How to do it…
jQuery is available in two different major versions at the time of
writing:

Version 1.x
Version 2.x

Though the Application Programming Interface (API) is the same
for both major versions, the difference lies in the support offered for
certain browsers. The 2.x line does not support old browsers, such
as IE 6, 7, and 8, while the 1.x line continues with this support. So, if
the end users of your application will not be using old browsers, you
can download the 2.x version.

The jQuery library consists of a single JavaScript (.js) file and can
be downloaded in the following formats:

Uncompressed format: This is used in a development
environment or when debugging the code.
Compressed format: This is used in a production (that is,
release) environment. It is compact and uses low bandwidth. It
is commonly referred to as the minified version.



To download the file, simply right-click on the required version, 1.x or
2.x, and the required format: uncompressed or compressed. Save
the file in a location of your choice as shown in the following
screenshot:

Note the following naming convention for the jQuery library:

 Uncompressed Compressed

Version 1.x jquery-1.x.x.js jquery-1.x.x.min.js

Version 2.x jquery-2.x.x.js jquery-2.x.x.min.js

The compressed (minified) version is clearly distinct from the
uncompressed version because of the .min.js extension. The
minified file uses code optimization techniques, such as removing



whitespaces and comments as well as reducing variable names to
one character. This version is difficult to read, so the uncompressed
version is preferred when debugging.

On the download page, there is also a map file available with the
.min.map extension. Sometimes, when bugs appear in the production
environment necessitating troubleshooting, the use of the minified
file for debugging can be difficult. The map file simplifies this
process. It maps the compressed file back to its unbuilt state so that
during debugging, the experience becomes similar to using the
uncompressed version.

See also…
The Understanding CDN for jQuery recipe.



Understanding CDN for jQuery
A Content Delivery Network (CDN) hosts content for users through large
distributed systems. The advantage of using a CDN is to improve the performance.
When using a CDN to retrieve the jQuery library, if the files have been downloaded
earlier, they will not be re-downloaded. This can help you improve the response
time.

How to do it…
The following CDNs are available for jQuery files:

jQuery's CDN provided by MaxCDN
The Google CDN
The Microsoft CDN
The CDNJS CDN
The jsDelivr CDN

To include jQuery on a web page, the URL of the respective CDN can be used so
that files can be directly served from the CDN instead of using the local copies.
The following table summarizes the respective CDN URLs for jQuery files:

CDN URL

jQuery's
CDN

Version 2.x:

http://code.jquery.com/jquery-2.x.x.js

http://code.jquery.com/jquery-2.x.x.min.js

Version 1.x:

http://code.jquery.com/jquery-1.x.x.js

http://code.jquery.com/jquery-1.x.x.min.js



CDN URL

The
Google
CDN

Version 2.x:

https://ajax.googleapis.com/ajax/libs/jquery/2.x.x/jquery.js

https://ajax.googleapis.com/ajax/libs/jquery/2.x.x/jquery.min.js

Version 1.x:

https://ajax.googleapis.com/ajax/libs/jquery/1.x.x/jquery.js

https://ajax.googleapis.com/ajax/libs/jquery/1.x.x/jquery.min.js

The
Microsoft
CDN

Version 2.x:

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.x.x.js

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.x.x.min.js

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.x.x.min.map

Version 1.x:

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.x.x.js

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.x.x.min.js

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.x.x.min.map

The
CDNJS
CDN

Version 2.x:

https://cdnjs.cloudflare.com/ajax/libs/jquery/2.x.x/jquery.js

https://cdnjs.cloudflare.com/ajax/libs/jquery/2.x.x/jquery.min.js

https://cdnjs.cloudflare.com/ajax/libs/jquery/2.x.x/jquery.min.map

Version 1.x:

https://cdnjs.cloudflare.com/ajax/libs/jquery/1.x.x/jquery.js

https://cdnjs.cloudflare.com/ajax/libs/jquery/1.x.x/jquery.min.js

https://cdnjs.cloudflare.com/ajax/libs/jquery/1.x.x/jquery.min.map



CDN URL

The
jsDelivr
CDN

Version 2.x:

https://cdn.jsdelivr.net/jquery/2.x.x/jquery.js

https://cdn.jsdelivr.net/jquery/2.x.x/jquery.min.js

https://cdn.jsdelivr.net/jquery/2.x.x/jquery.min.map

Version 1.x:

https://cdn.jsdelivr.net/jquery/1.x.x/jquery.js

https://cdn.jsdelivr.net/jquery/1.x.x/jquery.min.js

https://cdn.jsdelivr.net/jquery/1.x.x/jquery.min.map

Using CDNs for new releases
Note that CDNs may not have the latest files when new versions of the jQuery
library are launched since it usually takes a couple of days for third-parties to
update their files. In the case of new releases, always check the available version
before downloading them.

How it works…
CDNs consist of servers situated in data centers in strategic locations across the
globe. When a client requests a resource from a CDN, the server that is
geographically closest to the client processes the request. These servers are also
known as edge servers. In addition to this, edge servers have a caching
mechanism to serve various assets. All this helps you improve the client's
response time.

See also
The Using NuGet Package Manager to download jQuery recipe



Using NuGet Package Manager
to download jQuery
NuGet is a package manager available with Visual Studio. It
simplifies the process of installing and upgrading packages. This
recipe demonstrates the use of NuGet to download the jQuery
library.

Getting ready
To launch NuGet for a particular project, go to Tools | NuGet
Package Manager | Manage NuGet Packages for Solution... as
shown in the following screenshot:



Alternatively, right-click on the project in the Solution Explorer tab,
and select Manage NuGet Packages.

How to do it…
Perform the following steps to download jQuery using NuGet
Manager:

1. In the NuGet Package Manager, as shown in the following
screenshot, select the jQuery package from the left-hand side
panel. In the right-hand side panel, select the Version that you
would like to use in your web project from the drop-down menu.
Click on the Install button:

Tip



Searching for packages in NuGet

If jQuery is not visible in the left-hand side panel, you need
to search for it by keying in jQuery in the search box in the
top left corner of the NuGet Manager screen.

2. Click on OK when prompted for confirmation in order to make
the required changes to the solution.

How it works…
The NuGet Package Manager downloads the selected version of
jQuery in the Scripts folder. Any other version existing in the Scripts
folder is deleted. The Scripts folder will look like the following
screenshot:

The files downloaded by NuGet are as follows (the version numbers
may change in the future):

The Intellisense file: jquery-2.1.4.intellisense.js
The debug version : jquery-2.1.4.js
The release version: jquery-2.1.4.min.js
The map file: jquery-2.1.4.min.map

See also
The Downloading jQuery from jQuery.com recipe



Adding jQuery to an empty
ASP.NET web project using a
script block
To create ASP.NET 4 .6 Web Applications, Visual Studio provides
various ready templates such as Empty, Web Forms, MVC, Web
API, and so on. This recipe will use the Empty template, which
provides the developer with an empty project structure that consists
of only the web.config file.

Tip
Downloading the example code

You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Getting ready
Following are the steps to create a project by using Empty template:

1. Create a new project in Visual Studio by going to File | New |
Project..., as shown in the following screenshot:

http://www.packtpub.com/


Tip
Website or web project?

Instead of creating a new project, you can also create a new
website. Unlike a project, a website does not contain a
collective project file to track individual files in the
application. To create a website, go to File | New | Web
Site.... This will launch the New Website dialog box with the
list of available templates. Select the ASP.NET Empty
WebSite template.

2. This will launch the New Project dialog box, as shown in the
following screenshot. From the left-hand side panel, select your
desired programming language, Visual C# or Visual Basic, and
then, select ASP.NET Web Application from the middle panel:



3. Enter WebApplication1 (or any suitable name) in the Name field.
Click on the Browse button to go to the desired Location where
you would like to save the application. Click on OK.

4. This will launch the Select a template dialog box, as shown in
the following screenshot:



5. From ASP.NET 4.6 Templates, select Empty, and click on OK.
Visual Studio will create an empty project in the Solution
Explorer tab, as shown in the following screenshot:



Note
In the remaining recipes, when asked to create a Web
Application project using the Empty template, follow the steps
listed in this section.

How to do it…
Following are the steps to include jQuery using script block:

1. JavaScript files are usually placed in a folder named Scripts in
the web application. So, in the Solution Explorer tab, right-click
on the project and go to Add | New Folder from the menu:



2. Rename the folder to Scripts. Now, right-click on the Scripts
folder, and go to Add | Existing Item... as shown in the
following screenshot:

3. Now, browse to the location where you have saved the
downloaded copy of the jQuery files (refer to the Downloading
jQuery from jQuery.com recipe), and click on OK. It is
recommended that you add both the uncompressed and



compressed versions. The Scripts folder will be updated, as
shown in the following screenshot:

4. Next, create a new web form in the project by right-clicking on
the project and navigating to Add | New Item.... From the dialog
box, select Web Form, and enter a suitable name for the web
form, such as Default.aspx:



5. To use jQuery on the web form, simply drag and drop the
required jQuery file, that is, uncompressed or compressed on
the web form. Or alternatively, include the following <script> tag
in the <head> element:

For development mode, the code is as follows:

<script src="Scripts/jquery-2.1.4.js">

</script>

For release mode, the code is as follows:

<script src="Scripts/jquery-2.1.4.min.js">

</script>



See also
The Downloading jQuery from jQuery.com recipe



Adding jQuery to an empty
ASP.NET web project using
ScriptManager control
Adding jQuery to a web form using the script block has some
disadvantages. If the application is upgraded to use the latest
version of jQuery, all the web forms with the <script> tag require to
be changed. Secondly, switching from the uncompressed version in
the development environment to the compressed version in the
release environment should be handled manually and is hence error-
prone. Using the ASP.NET ScriptManager control helps you
overcome this problem. It can also load jQuery directly from CDN
instead of using the local copy.

Getting ready
1. Create a new ASP.NET Web Application project using the

Empty template by following the steps listed in the Adding
jQuery to an empty ASP.NET web project using a script block
recipe. Name the project WebApplication2 (or any other suitable
name).

2. Follow the steps in the preceding recipe to add the jQuery
library (the uncompressed and compressed formats) to the
Scripts folder.

3. Follow the steps to add a new web form to the project.

How to do it…
Following are the steps to add jQuery to ASP.NET web project using
the ScriptManager control:

1. Open the web form in the Design mode.



2. Launch the Toolbox. This can be done in two ways. From the
File menu at the top of the page, go to View | Toolbox.
Alternatively, use the shortcut keys, Ctrl + Alt + X.

3. Go to Toolbox | AJAX Extensions, and drag and drop the
ScriptManager control onto the form:

4. Right-click on the project in the Solution Explorer tab, and go
to Add | New Item.... From the dialog box, select Global
Application Class. This will add the Global.asax file to the
project:



Note
The Global.asax file is an optional file that resides in the root
directory of the application and responds to events at the
application and session levels, such as the starting and
ending an application or session.

5. Open the Global.asax file and include the following namespace
at the top of the page:

For VB, the code is as follows:

Imports System.Web.UI

For C#, the code is as follows:

using System.Web.UI;



6. In the Application_Start event in the Global.asax file, add the
following code to create a script that maps to jQuery:

For VB, the code is as follows:

Sub Application_Start(ByVal sender As Object, 

ByVal e As EventArgs) 

   

ScriptManager.ScriptResourceMapping.AddDefinit

ion("jquery", New ScriptResourceDefinition() 

With { 

   .Path = "~/Scripts/jquery-2.1.4.min.js", 

   .DebugPath = "~/Scripts/jquery-2.1.4.js", 

   .CdnPath = 

"https://ajax.googleapis.com/ajax/libs/jquery/

2.1.4/jquery.min.js", 

   .CdnDebugPath = 

"https://ajax.googleapis.com/ajax/libs/jquery/

2.1.4/jquery.js", 

   .CdnSupportsSecureConnection = True, 

   .LoadSuccessExpression = "window.jQuery"}) 

End Sub

For C#, the code is as follows:

protected void Application_Start(object 

sender, EventArgs e) 

{             

   

ScriptManager.ScriptResourceMapping.AddDefinit

ion("jquery", new     ScriptResourceDefinition 

   { 

      Path = "~/Scripts/jquery-2.1.4.min.js", 

      DebugPath = "~/Scripts/jquery-2.1.4.js", 

      CdnPath = 

"https://ajax.googleapis.com/ajax/libs/jquery/

2.1.4/jquery.min.js", 

      CdnDebugPath = 

"https://ajax.googleapis.com/ajax/libs/jquery/

2.1.4/jquery.js", 

      CdnSupportsSecureConnection = true, 

      LoadSuccessExpression = "window.jQuery" 

    }); 

}



7. Open the Default.aspx web form in the Source mode. Add the
following ScriptReference to the ScriptManager control:

<asp:ScriptManager ID="ScriptManager1" 

runat="server"> 

     <Scripts> 

          <asp:ScriptReference Name="jquery"  

/> 

     </Scripts> 

</asp:ScriptManager>

Note
When using the ScriptManager control to add a reference to
the jQuery library, the jQuery code should be placed after
the ScriptManager control, that is, after the jQuery reference
has been declared; otherwise, the page will throw an error. It
is also important to note that the ScriptManager control
should reside inside the <form> element.

8. To retrieve the jQuery files from CDN, set the EnableCdn property
of the ScriptManager control to true, as follows:

<asp:ScriptManager ID="ScriptManager1" 

runat="server" EnableCdn="true"> 

     <Scripts> 

          <asp:ScriptReference Name="jquery"  

/> 

     </Scripts> 

</asp:ScriptManager>

How it works…
This is how the ScriptManager control works:

1. The ScriptManager control can be used to load JavaScript files,
such as the jQuery library. This can be done by adding the



ScriptReference to jQuery in the ScriptManager control, as
follows:

<asp:ScriptReference Name="jquery"  />

2. However, we require to define this mapping. This can be done in
the Global.asax file using a ScriptResourceDefinition object,
which exposes the following properties:

Property Description

Path This is the release path of the
script resource

DebugPath This is the development/debug
path of the script resource

CdnPath This is the release path of the
script resource served from a
CDN

CdnDebugPath This is the development/debug
path of the script resource
served from a CDN

CdnSupportsSecureConnection This indicates whether the
HTTPS mode needs to be used
to retrieve the resource when the
page is accessed using a secure
connection



Property Description

LoadSuccessExpression This is the JavaScript expression
that detects whether a
JavaScript file has been loaded
successfully

3. The ScriptResourceDefinition object defined in Global.asax is
named jquery. The ScriptManager control uses the same name
to load the reference on the web form.

4. In the development/debug mode, the script is served from
DebugPath while in the release mode, it is served from Path.

Tip
Running in development/debug and release modes

To run the application in the development/debug mode, set
the debug attribute of the <compilation> element in the
web.config to true as follows:

<system.web> 

    <compilation debug="true"/> 

    ….. 

</system.web>  

When the debug attribute is set to false, the application will
run in the release mode.

5. If EnableCdn is set to true, the script is served from the CDN
path, that is, from CdnDebugPath in the development/debug mode
and CdnPath in the release mode.



6. The LoadSuccessExpression property renders an inline script to
load the library from the local path in the event of a CDN failure.
By right-clicking on the web page and viewing the source, note
that the ScriptManager control adds a fall back mechanism when
the CDN is unavailable and files are served locally instead:

See also
The Adding jQuery to an empty ASP.NET web project using a script
block recipe



Adding jQuery to an ASP.NET
Master Page
Master Pages are used to achieve a uniform look and feel in the
website. They maintain a consistent layout across all the content
pages. Including jQuery in the Master Page ensures that all the
content pages using that Master Page will also have the library
included by default. This recipe will demonstrate how this can be
done.

Note
A Master Page is an ASP.NET file with the .Master extension. It
has a @Master directive at the top of the layout instead of the
@Page directive in an ordinary .aspx page.

Getting ready
1. Create a new ASP.NET Web Application project using the

Empty template by following the steps listed in the Adding
jQuery to an empty ASP.NET web project using a script block
recipe. Name the project WebApplicationWithMaster (or any
other suitable name).

2. Follow the steps in the previous recipe to add the jQuery library
(the uncompressed and compressed formats) to the Scripts
folder.

3. In the Solution Explorer tab, right-click on the project, and go
to Add | New Item.... This will launch a dialog box, as shown in
the following screenshot. From the dialog box, select Web
Forms Master Page. Name the Master Page Default.Master,
and click on Add:



4. To add a web form—that is, a content page—to the project,
right-click on the project in the Solution Explorer tab again, and
navigate to Add | New Item.... From the dialog box, this time
select Web Form with Master Page, as shown in the following
screenshot. Name the web form Default.aspx, and click on
Add:



5. This will launch a dialog box so that you can select the Master
Page. From the dialog box, as shown in the following
screenshot, select the Master Page to be associated with the
content page, and click on OK:



How to do it…
To incorporate jQuery in an ASP.NET Master Page, follow these
steps:

1. Open the Default.Master Master Page in the Source mode, and
add a reference to the jQuery library using either the <script>
block (refer to the Adding jQuery to an empty ASP.NET web
project using a script block recipe) or the ScriptManager control
(refer to the Adding jQuery to an empty ASP.NET web project
using the ScriptManager control recipe), as shown in the
following screenshot:



Note
When using the <script> block, the jQuery reference should
preferably be placed in the <head> element.

When using the ScriptManager control, the control should
preferably be placed in the <form> element before the
ContentPlaceHolder in which the jQuery code will be added
later to the content pages. The Global.asax file should also
be updated in order to add the required
ScriptResourceDefinition , as described in the Adding
jQuery to an empty ASP.NET web project using the
ScriptManager control recipe.

2. The required jQuery code can now be added to the
ContentPlaceHolder (with ID = "ContentPlaceHolder1") in the
Default.aspx web form.



How it works…
On running the application, when the Default.aspx content page is
loaded, the HTML markup from the Master page adds the reference
to the jQuery library. This makes the content page jQuery-ready so
that any jQuery code can be executed.

To check whether the jQuery reference has been added to the page,
run the project and launch Default.aspx in the browser. Right-click
on the page in the browser window and select View Source. The
jQuery reference will be seen on the page, as shown in the following
screenshot:

See also
The Adding jQuery to an empty ASP.NET web project using the
ScriptManager control recipe



Adding jQuery
programmatically to a web form
In addition to adding jQuery to web forms using the script block and
the ScriptManager control, the code-behind file can also emit the
required script code. This recipe will demonstrate how this can be
done.

Getting ready
1. Create an ASP.NET Web Application project by navigating to

File | New | Project | ASP.NET Web Application. Select the
Empty template. Name the project WebApplicationWithPageLoad
(or any other suitable name).

2. Add a new Web Form to the project and name it Default.aspx.
3. Add the jQuery library files to the Scripts folder.
4. From the Solution Explorer tab, navigate to Default.aspx.vb

(VB) or Default.aspx.cs (C#), which is the code-behind file for
the web form. Open this file.

How to do it…
In the Page_Load event handler of Default.aspx.vb, use the
RegisterClientScriptInclude method to generate a script block on
the page, as follows:

For VB, the code is as follows:

Protected Sub Page_Load(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles Me.Load 

   

Page.ClientScript.RegisterClientScriptInclude("jqu

ery",   Page.ResolveUrl("~/Scripts/jquery-

2.1.4.js")) 

End Sub



For C#, the code is as follows:

protected void Page_Load(object sender, EventArgs 

e) 

{ 

   

Page.ClientScript.RegisterClientScriptInclude("jqu

ery",   Page.ResolveUrl("~/Scripts/jquery-

2.1.4.js")); 

}

How it works…
The RegisterClientScriptInclude method requires two parameters:
the key and URL. It adds the script block with the path to the jQuery
library in the <form> element, as shown in the following screenshot.
The Page.ResolveUrl method is used to return a URL relative to the
site root:

Since the jQuery library is added to the <form> element, all the
jQuery code should be written in the <form> element instead of the
<head> element, preferably toward the end of the page before closing
the <form> element.

See also
The Adding jQuery to an empty ASP.NET web project using a script
block recipe



Understanding jQuery
reference in the default web
application template
So far, all examples have used the Empty template for the ASP.NET
Web Application project. When using a non-empty built-in web
application template, ASP.NET adds a reference to the jQuery library
in the Master Page using the ScriptManager control. This recipe
walks you through the important details of this mapping.

How to do it...
Here are the steps to create an ASP.NET web application using the
default web application template:

1. Create a new project by navigating to File | New | Project....
From the dialog box, select ASP.NET Web Application. Name
the project DemoWebApplication (or any other suitable name),
and click on OK.

2. A new dialog box will be launched. Select Web Forms from the
available templates. Note that the Web Forms checkbox is
checked by selecting the Web Forms template (refer to the
following screenshot) and click on OK as shown in the following
screenshot:



3. Open the Site.Master Master Page in the Source mode, as
shown in the following screenshot:

4. Notice that the ScriptManager control that is added to the <form>
element has the following reference to jQuery:

<asp:ScriptReference Name="jquery" />



How it works…
When you follow the preceding steps, this is how the web application
is mapped to the jQuery library:

1. The ScriptManager control switches the jQuery library between
the development and release versions, depending on the debug
attribute of the <compilation> element in web.config:

<compilation debug="true"/>

2. When the debug attribute is true, the uncompressed version is
used. When debug is false, the minified version is used.

3. The default template is shipped with the
AspNet.ScriptManager.jQuery package. This package adds the
following ScriptMappings to jQuery in the PreApplicationStart
method of the application as follows:

For C#, the code is as follows:

string str = "2.4.1"; 

ScriptManager.ScriptResourceMapping.AddDefinit

ion("jquery", new ScriptResourceDefinition 

{ 

    Path = "~/Scripts/jquery-" + str + 

".min.js",  

    DebugPath = "~/Scripts/jquery-" + str + 

".js",  

    CdnPath = 

"http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

" + str + ".min.js",  

   CdnDebugPath = 

"http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

" + str + ".js",  

   CdnSupportsSecureConnection = true,  

   LoadSuccessExpression = "window.jQuery" 

});



Note
The default Web Forms template adds the Microsoft CDN
URL, as shown in the preceding code.

4. When the EnableCdn property of the ScriptManager control is set
to true, CdnPath and CdnDebugPath are used in release and
development modes, respectively, to serve scripts from the
Microsoft CDN:

<asp:ScriptManager runat="server" 

EnableCdn="true">

5. However, if the CDN is down or if the application is offline, the
ScriptManager control will include a fallback mechanism to serve
the local copy of jQuery, as shown in the following screenshot:

6. To change the CDN to another, for example Google CDN, we
need to change ScriptResourceMapping in the RegisterBundles
method in BundleConfig, as shown in the following code. This
module/class is located in the App_Start folder:

For VB, the code is as follows:

ScriptManager.ScriptResourceMapping.AddDefinit

ion("jquery", New ScriptResourceDefinition() 

With { 

   .Path = "~/Scripts/jquery-2.1.4.min.js", 

   .DebugPath = "~/Scripts/jquery-2.1.4.js", 

   .CdnPath = 

"https://ajax.googleapis.com/ajax/libs/jquery/

2.1.4/jquery.min.js", 

   .CdnDebugPath = 

"https://ajax.googleapis.com/ajax/libs/jquery/

2.1.4/jquery.js", 



   .CdnSupportsSecureConnection = True, 

   .LoadSuccessExpression = "window.jQuery"})

For C#, the code is as follows:

ScriptManager.ScriptResourceMapping.AddDefinit

ion("jquery", new ScriptResourceDefinition 

{ 

   Path = "~/Scripts/jquery-2.1.4.min.js", 

   DebugPath = "~/Scripts/jquery-2.1.4.js", 

   CdnPath = 

"https://ajax.googleapis.com/ajax/libs/jquery/

2.1.4/jquery.min.js", 

   CdnDebugPath = 

"https://ajax.googleapis.com/ajax/libs/jquery/

2.1.4/jquery.js", 

   CdnSupportsSecureConnection = true, 

   LoadSuccessExpression = "window.jQuery" 

});

7. By running the page and viewing the source in the browser
window, note that Microsoft CDN is replaced with Google CDN
as required:

8. Open the Global.asax page to view the registration of bundles in
the Application_Start event handler as follows:

For VB, the code is as follows:

BundleConfig.RegisterBundles(BundleTable.Bundl

es)

For C#, the code is as follows:

BundleConfig.RegisterBundles(BundleTable.Bundl

es);



See also
The Adding jQuery to an empty ASP.NET web project using the
ScriptManager control recipe



Hello World in a web project
using jQuery
Until now, all recipes have demonstrated different ways to add the
jQuery library to web pages. This is the first step in making the page
jQuery-ready. In this recipe, let's move on to the next step: writing
the jQuery code inside a script block to manipulate controls in a web
form. We will display a simple Hello World message on the web page
by manipulating a Label control on a web form.

Getting ready
1. Create a Web Application project by going to File | New |

Project | ASP.NET Web Application. Select the Empty
template. Name the project HelloWorld (or any other suitable
name).

2. Add a new Web Form to the project.
3. Add the jQuery library files to the Scripts folder.
4. Add a reference to the jQuery library on the web form using any

method of your choice.
5. Open the web form in the Design mode and drag and drop a

Label control by navigating to the Toolbox | Standard controls.
Change the properties of the Label control as follows:

<asp:Label ID="lblMessage" runat="server" 

Text=""></asp:Label>

How to do it…
If a jQuery reference is added to the <head> element, then include
the following <script> block in the <head> element. Otherwise,
include the <form> element, preferably before the <form> tag is
closed:



<script type="text/javascript"> 

   $(document).ready(function () { 

      var fontStyle = "Arial"; 

      var fontSize = 28; 

      $("#<%=lblMessage.ClientID%>").css("font-

family", fontStyle); 

      $("#<%=lblMessage.ClientID%>").css("font-

size", fontSize); 

      $("#<%=lblMessage.ClientID%>").text("Hello 

World!!"); 

}); 

</script>

How it works…
Following are the steps to print Hello World!! in a web project using
jQuery:

1. In the preceding jQuery code, the $ symbol is used to instantiate
the jQuery object.

2. The .ready() function is triggered when the DOM is ready. It is
commonly used to execute the required jQuery code on the
page.

3. The Label control can be accessed from the jQuery code using
ASP.NET's ClientID property and jQuery's #identifier selector.

4. Using the .css() property of the jQuery object, the font style,
size, and text of the Label control are manipulated so that the
following output is displayed on running the application:



See also
The Hello World in ASP.NET MVC using jQuery recipe



Bundling jQuery in ASP.NET
MVC
Model View Controller (MVC) is a design pattern that separates
design (Model), presentation (View), and action (Controller).
Because of its popularity with developers, Visual Studio provides
ready templates that are used to create MVC projects.

Similar to web forms, jQuery can be included in MVC views using the
<script> tag. In this example, however, let's take a look at the use of
bundling for this purpose.

Bundling helps you reduce the number of HTTP requests made by
the browser. It is a feature that allows style sheets, JavaScript, or
other files to be combined together in a single file called a bundle.
This combined file can be downloaded as one unit using a single
HTTP request.

Getting ready
1. Launch a new ASP.NET Web Application project in Visual

Studio using the Empty template. Ensure that the MVC
checkbox is checked, as shown in the following screenshot:



2. This will create a project with MVC folders. Right-click on the
Controllers folder in the Solution Explorer tab, and go to Add
| Controller... as shown in the following screenshot:



3. This will launch the Add Scaffold dialog box. Select MVC 5
Controller – Empty, and click on the Add button:

4. On being prompted to add a name for the controller, type
HomeController and click on the Add button:

5. Next, open the HomeController in the source mode, and right-
click on the Index action method, as shown in the following
screenshot. Click on Add View... as shown in the following
screenshot:



6. This will launch the Add View dialog box. From the Template
field, select Empty (without model). Uncheck the Use a layout
page option and click the Add button to continue:

Note



In the remaining recipes, when asked to create a MVC
application, follow steps 1 to 6 as mentioned earlier.

7. To use bundling, we need to install the ASP.NET Web
Optimization package. This can be done from NuGet. From the
File menu, launch NuGet by navigating to Project | Manage
NuGet Packages. Select Microsoft.AspNet.Web.Optimization
from the list of available packages. If the package is not visible,
search for web.optimization, as shown in the following
screenshot. Click on the Install button to download and install
the latest version:

8. Lastly, create a Scripts folder in the project and include the
jQuery library files in the folder.

How to do it…



Follow these steps to bundle jQuery in ASP.NET MVC:

1. Open the BundleConfig class in the App_Start folder in the MVC
project. If the file does not exist, create a new module (VB)/class
(C#) in the App_Start folder, and name it
BundleConfig.vb/BundleConfig.cs.

2. In BundleConfig.vb/BundleConfig.cs, add a namespace to
System.Web.Optimization at the top of the file:

For VB, the code is as follows:

Imports System.Web.Optimization

For C#, the code is as follows:

using System.Web.Optimization;

3. Register and configure a bundle for jQuery in the
RegisterBundles method in BundleConfig as follows:

For VB, the code is as follows:

Public Module BundleConfig 

   Public Sub RegisterBundles(ByVal bundles As 

BundleCollection) 

      bundles.Add(New 

ScriptBundle("~/Scripts/jquery").Include( 

                "~/Scripts/jquery-

{version}.js")) 

   End Sub 

End Module

For C#, the code is as follows:

public class BundleConfig 

{ 

    public static void 

RegisterBundles(BundleCollection bundles) 

    { 

       bundles.Add(new 



ScriptBundle("~/Scripts/jquery").Include( 

                "~/Scripts/jquery-

{version}.js")); 

    } 

}

4. To enable bundling in the development mode (optional), add the
following code to the RegisterBundles method:

For VB, the code is as follows:

BundleTable.EnableOptimizations = True

For C#, the code is as follows:

BundleTable.EnableOptimizations = true;

5. In the Global.asax file, include the namespace for
System.Web.Optimization, as shown in step 2 mentioned
previously. Then, register the bundle in the Application_Start
method as follows:

For VB, the code is as follows:

BundleConfig.RegisterBundles(BundleTable.Bundl

es)

For C#, the code is as follows:

BundleConfig.RegisterBundles(BundleTable.Bundl

es);

6. Now, open the Index view and include the namespace for
System.Web.Optimization, as shown in the following code:

For VB, the code is as follows:

@Imports System.Web.Optimization



For C#, the code is as follows:

@using System.Web.Optimization

7. Next, add the script reference for jQuery to the view in the
<head> element as follows:

@Scripts.Render("~/Scripts/jquery")

Note
Bundling is disabled in the debug mode by setting the debug
attribute to true in the <compilation> element in the web.config
file. To override this setting and enable bundling in the debug
mode, set the EnableOptimizations property of the BundleTable
class to true in the RegisterBundles method.

Unless EnableOptimizations is set to true, or the debug attribute
is set to false, the files will not be bundled and the debug
versions of the files will be used instead of the minified versions.

How it works…
Bundling jQuery in ASP.NET MVC can be done by following these
steps:

1. The wildcard string used for bundling jQuery ~/Scripts/jquery-
{version}.js includes the development as well as the minified
versions. The .vsdoc file, which is used by IntelliSense, is not
included in the bundle.

2. When the debug mode is on, the corresponding debug version
is used. In the release mode, the minified version is bundled.

3. On running the view in a browser, the bundled file can be seen
on viewing the source in the browser window, as shown in the
following HTML markup:



See also
The Using a CDN to load jQuery in MVC recipe



Using CDN to load jQuery in
MVC
Because of the advantages of using CDN in web applications,
bundling also supports the loading of files directly from CDN. This
recipe will explain how a MVC project can be configured to use CDN.

Getting ready
This recipe is a continuation of the previous recipe, Bundling jQuery
in ASP.NET MVC. So, follow all the steps described in the previous
recipe.

How to do it…
Following are the steps to load jQuery in MVC:

1. In the BundleConfig module/class, modify the RegisterBundles
method in order to set the UseCdn property to true, as shown in
the code snippet in step 2.

2. Declare the required CDN path, and add a ScriptBundle with
two parameters: the virtual path of the bundle and the CDN
path, as follows:

For VB, the code is as follows:

Public Module BundleConfig 

   Public Sub RegisterBundles(ByVal bundles As 

BundleCollection) 

      bundles.UseCdn = True 

      Dim cdnPath As String =  

"http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

2.1.4.min.js" 

bundles.Add(New 

ScriptBundle("~/Scripts/jquery", 

cdnPath).Include("~/Scripts/jquery-



{version}.js")) 

   End Sub 

End Module

For C#, the code is as follows:

public class BundleConfig 

{ 

    public static void 

RegisterBundles(BundleCollection bundles) 

    { 

        bundles.UseCdn = true; 

        string cdnPath = 

"http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

2.1.4.min.js"; 

        bundles.Add(new 

ScriptBundle("~/Scripts/jquery", 

cdnPath).Include("~/Scripts/jquery-

{version}.js")); 

     } 

}

How it works…
Following are the steps to load jQuery in MVC using CDN:

1. By setting the UseCdn property, serving of bundled scripts from
the CDN is enabled.

2. In the development mode, the application retrieves files from the
local Scripts folder. In the release mode, the CDN path is used
to serve the bundled scripts.

3. However, there is a possibility that the CDN is down. Hence, a
fallback mechanism is required so that the scripts are served
locally in such a scenario. This can be done by adding the
following <script> block in the required view:

@Scripts.Render("~/Scripts/jquery") 

<script type="text/javascript"> 

   if (typeof jQuery == 'undefined') { 

      var e = 

document.createElement('script'); 



      e.src = '@Url.Content("~/Scripts/jquery-

2.4.1.js")'; 

      e.type = 'text/javascript'; 

      document.getElementsByTagName("head")

[0].appendChild(e); 

   } 

</script>

See also
The Hello World in ASP.NET MVC using jQuery recipe



Hello World in ASP.NET MVC
using jQuery
This recipe demonstrates how to write a simple jQuery code to
display Hello World in the ASP.NET MVC project.

Getting ready
Use the MyMvcApplication project created in the Bundling jQuery in
ASP.NET MVC recipe.

How to do it…
Following are the steps to write simple jQuery code:

1. Open the Index view, and add the following markup to the
<body> element:

    <div id="divMessage">  

    </div>

2. In the <head> element, include the following jQuery code:
<script type="text/javascript"> 

    $(document).ready(function () { 

        var fontStyle = "Arial"; 

        var fontSize = 28; 

        $("#divMessage").css("font-family", 

fontStyle); 

        $("#divMessage").css("font-size", 

fontSize); 

        $("#divMessage").text("Hello 

World!!"); 

    }); 

    </script>

3. Right-click on the Index view, and select View in Browser
(Internet Explorer).



How it works…
Following are the steps to print Hello World in ASP.NET MVC using
jQuery:

1. The $ symbol is used to instantiate the jQuery object.
2. The .ready() function is triggered when the DOM is ready. It is

commonly used to execute the required jQuery code on the
page.

3. The HTML <div> element with id = "divMessage", which is used
to display the Hello World message, can be accessed using its
ID with jQuery's #identifier selector—that is, using the
#divMessage selector.

4. Using the .css() property of the jQuery object, the font style,
size, and text of the <div> element are manipulated so that the
following output is displayed on running the application:

See also
The Bundling jQuery in ASP.NET MVC recipe



Debugging jQuery code in
Visual Studio
Debugging is inevitable for resolving bugs in the code during the
development phase. Sometimes, bugs also slip into production.
Visual Studio provides support for developers to debug the
JavaScript code in the same manner as the server-side code.
However, there is a limitation and debugging in Visual Studio can
only be done using the Internet Explorer browser at present.

Getting ready
1. To enable debugging for a particular project, both the project

properties and web.config must be updated. To update the
project properties, right-click on the project in the Solution
Explorer tab, and select Properties. Go to the Web tab, and
select the ASP.NET checkbox in the Debuggers section, as
shown in the following screenshot:

2. In the web.config file, go to the
configuration/system.web/compilation element. If the element
does not exist, add a new node. To enable debugging, the debug



property of the <compilation> node should be set to true, as
follows:

<compilation debug="true" … />

How to do it…
Debugging jQuery code in Visual Studio can be done by performing
the following steps:

1. The first step in debugging is to define breakpoints in the
JavaScript code, where the execution will be halted so that
variables, program flow, and so on can be inspected. To define
breakpoints, just click on the left-hand side gray margin in the
source code. Each breakpoint is represented by a small red
circle, as shown in the following figure:

2. Press F5, or navigate to Debug | Start Debugging, to start
running the application in the debug mode. The execution will
stop at the first breakpoint that it comes across, as shown in the
following screenshot:



3. To launch the Watch window in order to observe the values of
variables during runtime, go to Debug | Windows | Watch. This
will display the window, as shown in the preceding screenshot.

4. You will also be able to see a window showing the breakpoints
by navigating to Debug | Windows | Breakpoints. The result is
shown in the following screenshot:



5. To trace the code line by line, press F11 or navigate to Debug |
Step Into at each line. To skip to the next breakpoint, press F5.

6. Press Shift + F5 to stop debugging.

Note
Make sure that you turn off debugging before launching the
application in the production environment. An application that has
debugging enabled has a slower performance since debugging
generates additional information to enable the debugger to
display the contents of variables. It also outputs more information
to the call stack, which can become a security issue in the
production environment.

See also
The Hello World in a web project using jQuery recipe



Chapter 2. Using jQuery
Selectors with ASP.NET
Controls
This chapter will introduce you to the various types of selectors that
can be used to work with ASP.NET controls. We will cover the
following recipes in this chapter:

Selecting a control using an ID and displaying its value
Selecting a control using the CSS class
Selecting a control using HTML tag
Selecting a control by its attribute
Selecting an element by its position in the DOM
Enabling/disabling controls on a web form
Using selectors in MVC applications

Note
The source code provided with the book has each recipe written
as an independent project and named as Recipe1, Recipe2,
Recipe3, and so on.

Introduction
A web page is composed of a variety of HTML elements, such as
form, div, span, paragraph, hyperlink, table, input, select, and so on.
When writing a client script, there is often a need to manipulate
these elements. In JavaScript, it is possible to access these
elements using their unique IDs with the help of the
document.getElementById() statement.



However, in real-world applications, there might be a requirement to
retrieve elements based on attributes other than their IDs. Or some
applications may require retrieval and manipulation of more than one
element. This is made possible by the use of selectors in jQuery.

A selector is a jQuery construct that retrieves elements on a page
based on a specified condition. It can be used to return single or
multiple elements. Using jQuery selectors, it is possible to match
elements using their ID, CSS class, tag name, and position in the
Document Object Model (DOM) or other attributes.

When an ASP.NET page is viewed in the browser, the controls are
rendered as HTML elements. This makes it possible to select
ASP.NET controls using standard jQuery selectors. The following
table summarizes the mapping of some common ASP.NET controls
to their rendered HTML equivalents:

ASP.NET
Control

Rendered HTML
Element Rendered HTML Tag

BulletedList ul, li <ul><li></li>

<li></li></ul>

Button input <input type= "submit"/>

CheckBox input <input type= "checkbox"/>



ASP.NET
Control

Rendered HTML
Element Rendered HTML Tag

CheckBoxList input <input type= "checkbox"

name="CheckBoxList1"/>

<input type= "checkbox"

name="CheckBoxList1"/>

DropDownList select, option <select><option></option>

<option></option></select>

Hyperlink a <a>

Image img <img>

ImageButton input <input type= "image"/>

Label span <span>

LinkButton a <a>

ListBox select, option <select><option></option>

<option></option></select>

Panel div <div>



ASP.NET
Control

Rendered HTML
Element Rendered HTML Tag

RadioButton input <input type= "radio"/>

RadioButtonList input <input type= "radio"

name="RadioButtonList1"/>

<input type= "radio"

name="RadioButtonList1"/>

TextBox input <input type="text">

GridView table <table>

Standard jQuery selectors can also be used with ASP.NET MVC
since MVC applications use raw HTML markups or built-in extension
methods of the HTML class to render the content.

jQuery selectors can be broadly classified into the following types:

Basic selectors: These selectors are similar to CSS selectors
that are used in style sheets to apply styles to selected
elements. Basic selectors can be used to retrieve elements
based on the HTML tag, CSS class, element ID, or a
combination of all these. The examples of basic selectors are as
follows:

Example Description



Example Description

$("*") This selects all elements on the page

$("div") This selects all <div> elements on the page

$(".highlight") This selects all elements on the page with the
CSS class highlight

$("#footer") This selects an element with an ID equal to
footer

$("div, p,

.highlight,

#footer")

This selects all <div> and <p> elements, all
elements with the CSS class highlight, and
the element with an ID equal to footer

Hierarchy selectors: These selectors are also similar to CSS
selectors and are used to select child elements in the DOM tree.
The examples of hierarchy selectors are listed as follows:

Example Description

$("div p") This selects all <p> elements inside <div> elements



Example Description

$("#footer

p")

This selects all <p> elements that are descendants
of the element with ID equal to footer

$("div >

p")

This selects all <p> elements that are immediate
children of <div> elements

$("div ~

p")

This selects all <p> elements that follow a <div>
element and have the same parent as the <div>
element

$("div +

p")

This selects all <p> elements that are immediately
preceded by <div> elements

Attribute selectors: These selectors retrieve elements based
on the attributes they have. The examples of attribute selectors
are listed as follows:

Example Description

$("a[href]") This selects all <a> elements that
have the href attribute



Example Description

$("a[href=

'http://www.google.com']")

This selects all <a> elements
whose href is exactly equal to
'http://www.google.com'

$("a[href*=

'google.com']")

This selects all <a> elements
whose href contains 'google.com'

$("a[href^= 'https']") This selects all <a> elements
whose href starts with 'https'

$("a[href$= '.org']") This selects all <a> elements
whose href ends with '.org'

$("a[hreflang|= 'en']") This selects all <a> elements
whose hreflang is equal to 'en' or
starts with 'en-'

Form selectors: These selectors are used to work with various
form elements, such as an input, checkbox, radio, and so on.
The examples of form selectors are as follows:

Example Description



Example Description

$(":button"), $(":submit"), $(":reset"),

$(":text"), $(":radio"), $(":checkbox"),

$(":password"), $(":image"), $(":file")

This selects the
input element of
the specific type

$(":input") This selects all
form elements

$(":checked") This selects all
checked
checkboxes and
radio buttons

$(":selected") This returns all
selected <option>
elements

$(":enabled") This returns all
enabled form
elements

$(":disabled") This returns all
disabled form
elements

Position filters: These selectors retrieve elements based on
their position in a collection. The examples of position selectors



are listed as follows:

Example Description

$(".highlight

:first")

This selects the first element with the CSS class
highlight

$(".highlight

:last")

This selects the last element with the CSS class
highlight

$(".highlight

:odd")

This selects the odd elements from all elements
with the CSS class highlight when the index is
zero-based

$(".highlight

:even")

This selects the even elements from all
elements with the CSS class highlight when
the index is zero-based

$(".highlight

:eq(3)")

This selects the element with an index equal to
3 from all elements with the CSS class
highlight when the index is zero-based

$(".highlight

:lt(3)")

This selects elements with an index less than 3
from all elements with the CSS class highlight
when the index is zero-based



Example Description

$(".highlight

:gt(3)")

This selects elements with an index greater than
3 from all elements with the CSS class
highlight when the index is zero-based

Note
Find out more about the different types of jQuery selectors at
http://api.jquery.com/category/selectors.

When writing the jQuery code, often anonymous functions are used.
An anonymous function is a function without a named identifier. It is
usually used as an argument to other functions.

Let's say we have an onDocumentReady()function. This function is
passed to the $(document).ready() function as an argument, as
follows:

function onDocumentReady(){…} 

 

$(document).ready(onDocumentReady);

Instead of working in this way, an anonymous function can be
directly passed to $(document).ready() as an argument, as follows:

$(document).ready(function(){ …} );

However, note that anonymous functions are not accessible once
they have been created.

http://api.jquery.com/category/selectors


Selecting a control using ID and
displaying its value
This recipe demonstrates how to access basic ASP.NET controls,
such as CheckBoxList, TextBox, and RadioButtonList on a web form
using jQuery's #identifier selector. The constructs used in this
example are as follows:

Construct Type Description

$(#identifier) jQuery
selector

This selects an element based on its ID

$(this) jQuery
object

This refers to the current jQuery object

:checked jQuery
selector

This selects checked input elements

.click() jQuery
event
binder

This binds a handler to the click event of
an element

.each() jQuery
method

This iterates over the matched elements
and executes a function for each element



Construct Type Description

.find() jQuery
method

This finds all elements that match the filter

.html() jQuery
method

This returns the HTML content of the first
matched element or sets the HTML
content of every matched element

.is() jQuery
method

This returns a Boolean value if the
matched element satisfies a given
condition

.next() jQuery
method

This gets the immediate sibling of an
element

:selected jQuery
selector

This retrieves selected input elements

.text() jQuery
method

This returns the combined text content of
each of the matched elements or sets the
text content of every matched element

.val() jQuery
method

This returns the value of the first matched
element or sets the value of every
matched element



Getting ready
Following are the steps to create a form using basic ASP.NET
controls:

1. In this example, we will create a simple User Registration form,
as shown in the following screenshot:

2. Create an ASP.NET Web Application project using the Empty
template and name the project Recipe1 (or any other suitable
name).

3. Add a Web Form to the project and name it Default.aspx.
4. Create a Scripts folder and add jQuery files (debug and release

versions of a library) to it.



5. Include the jQuery library in the form using either the <script>
block or the ScriptManager control, as described in Chapter 1,
Getting Started with jQuery in ASP.NET.

6. Now, drag and drop ASP.NET controls by navigating to the
Toolbox | Standard controls to create the form, as shown in the
preceding screenshot.

7. The HTML markup for the form is as follows:
<table> 

  <tr> 

    <td> 

      <asp:Label ID="lblName" runat="server" 

Text="Name"></asp:Label> 

    </td> 

    <td> 

      <asp:TextBox ID="txtName" runat="server" 

Width="223px"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblGender" runat="server" 

Text="Gender"></asp:Label> 

    </td> 

    <td> 

      <asp:RadioButtonList ID="rblGender" 

runat="server"> 

        <asp:ListItem Text="Male" 

Value="Male"></asp:ListItem> 

        <asp:ListItem Text="Female" 

Value="Female"></asp:ListItem> 

      </asp:RadioButtonList> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblEducation" 

runat="server" Text="Highest Education">

</asp:Label> 

    </td> 

    <td> 

      <asp:DropDownList ID="ddlEducation" 

runat="server" Height="16px" Width="231px"> 

        <asp:ListItem Text="--Select--" 

Value=""></asp:ListItem> 

        <asp:ListItem Text="Post Graduate" 



Value="PG"></asp:ListItem> 

        <asp:ListItem Text="Degree" 

Value="DG"></asp:ListItem> 

        <asp:ListItem Text="Diploma" 

Value="DP"></asp:ListItem> 

        <asp:ListItem Text="A-Levels" 

Value="AL"></asp:ListItem> 

        <asp:ListItem Text="O-Levels" 

Value="OL"></asp:ListItem> 

      </asp:DropDownList> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblInterest" 

runat="server" Text="Interest Areas">

</asp:Label> 

    </td> 

    <td> 

      <asp:CheckBoxList ID="chkInterest" 

runat="server"> 

        <asp:ListItem Text="ASP.NET" 

Value="ASP.NET"></asp:ListItem> 

        <asp:ListItem Text="Java" 

Value="Java"></asp:ListItem> 

        <asp:ListItem Text="Android" 

Value="Android"></asp:ListItem> 

        <asp:ListItem Text="HTML5" 

Value="HTML5"></asp:ListItem> 

        <asp:ListItem Text="XML" Value="XML">

</asp:ListItem> 

      </asp:CheckBoxList> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"> 

      &nbsp; 

      <asp:CheckBox ID="chkSubscribe" 

runat="server" Text="Subscribe to newsletter" 

/> 

    </td> 

  </tr> 

  <tr> 

    <td>&nbsp;</td> 

    <td>&nbsp;</td> 

  </tr> 

  <tr> 

    <td>&nbsp;</td> 



    <td> 

      <asp:Button ID="btnSubmit" 

runat="server" Text="Submit" /> 

    </td> 

  </tr> 

</table>

How to do it…
Include the following jQuery code in a <script> block after the jQuery
library has been included in the form:

<script type="text/javascript"> 

  $(document).ready(function() { 

    $("#<%=btnSubmit.ClientID%>").click(function() 

{ 

      var strName = $("#

<%=txtName.ClientID%>").val(); 

      var strGender = 

        $("#<%=rblGender.ClientID%> 

input:checked").val(); 

      var strEducation = $("#

<%=ddlEducation.ClientID%>").find(":selected").tex

t(); 

      var strInterest = ""; 

      $("#<%=chkInterest.ClientID%> 

input:checked").each( 

        function() { 

          strInterest += " " + $(this).val(); 

        }); 

      var strSubscribe = ""; 

      if ($("#

<%=chkSubscribe.ClientID%>").is(":checked")) { 

        strSubscribe = $("#

<%=chkSubscribe.ClientID%>").next().html(); 

      } 

      var strDisplayMsg = "You are about to submit 

the following data: \r\n\r\n" + 

        "Name: " + strName + "\r\n" + 

        "Gender: " + strGender + "\r\n" + 

        "Highest Education: " + strEducation + 

"\r\n" + 

        "Interest Areas: " + strInterest + "\r\n" 

+ 



        strSubscribe + "\r\n\r\n" + 

        "Click OK to proceed" 

      window.confirm(strDisplayMsg); 

    }); 

  }); 

</script>

Note
The preceding <script> block can be included in the <head> or
<form> element, depending on how the jQuery library has been
included in the page.

How it works…
Let's look at how the form works:

1. Save the application using Ctrl + S, and run it by pressing F5.
This will launch the User Registration page. Enter some test
values in the controls, and click on the Submit button. A
confirmation prompt is displayed that summarizes the values of
the controls as follows:



Note
Note that no validation has been done on the controls, and
the page allows you to submit a blank form as well.
Validation will be described in subsequent chapters.

2. In the jQuery <script> block, every ASP.NET control is retrieved
using the #identifier selector on the equivalent rendered
HTML tag. The code is executed when the click event of the
Submit button is raised, as shown in the following code:

$("#<%=btnSubmit.ClientID%>").click(function 

() {…});



Note
ClientID is the value assigned by ASP.NET to the ID of the
equivalent HTML tag generated by a server control at
runtime. ASP.NET provides various algorithms for the
generation of ClientIDs such as AutoID, Static, Predictable,
and Inherit.

3. At runtime, the TextBox control is rendered as the following
HTML input element (right-click on the page in the browser, and
click on View Source to see the rendered HTML):

<input name="txtName" type="text" id="txtName" 

style="width:223px;" />

4. So, in the jQuery code, the value of the TextBox control with an
ID equal to txtName can be accessed using the following code:

var strName = $("#

<%=txtName.ClientID%>").val();

5. The RadioButtonList control is rendered as the following HTML
code:

<table id="rblGender"> 

  <tr> 

    <td><input id="rblGender_0" type="radio" 

name="rblGender" value="Male" /><label 

for="rblGender_0">Male</label></td> 

  </tr> 

  <tr> 

    <td><input id="rblGender_1" type="radio" 

name="rblGender" value="Female" /><label 

for="rblGender_1">Female</label></td> 

  </tr> 

</table>



In the jQuery code, the selected radio button from the list can be
accessed using the checked filter, as follows:

var strGender = $("#<%=rblGender.ClientID%> 

input:checked").val();

6. The DropDownList control is rendered as the following HTML
code:

<select name="ddlEducation" id="ddlEducation" 

style="height:16px;width:231px;"> 

<option value="">--Select--</option> 

<option value="PG">Post Graduate</option> 

<option value="DG">Degree</option> 

<option value="DP">Diploma</option> 

<option value="AL">A-Levels</option> 

<option value="OL">O-Levels</option> 

</select>

The jQuery code finds the selected item from the DropDownList
control using the selected filter and returns its text value as
follows:

 var strEducation = $("#

<%=ddlEducation.ClientID%>").find(":selected")

.text();

7. The CheckBoxList control is rendered as the following HTML
code:

<table id="chkInterest"> 

<tr> 

  <td><input id="chkInterest_0" 

type="checkbox" name="chkInterest$0" 

value="ASP.NET" /><label 

for="chkInterest_0">ASP.NET</label></td> 

</tr> 

<tr> 

  <td><input id="chkInterest_1" 

type="checkbox" name="chkInterest$1" 

value="Java" /><label 

for="chkInterest_1">Java</label></td> 

</tr> 

<tr> 



  <td><input id="chkInterest_2" 

type="checkbox" name="chkInterest$2" 

value="Android" /><label 

for="chkInterest_2">Android</label></td> 

</tr> 

<tr> 

  <td><input id="chkInterest_3" 

type="checkbox" name="chkInterest$3" 

value="HTML5" /><label 

for="chkInterest_3">HTML5</label></td> 

</tr> 

<tr> 

  <td><input id="chkInterest_4" 

type="checkbox" name="chkInterest$4" 

value="XML" /><label 

for="chkInterest_4">XML</label></td> 

</tr> 

<table>

The jQuery code loops through each checked element using the
.each() method, and appends its value to a strInterest string
as follows:

var strInterest = ""; 

$("#<%=chkInterest.ClientID%> 

input:checked").each(function () { 

  strInterest += " " + $(this).val(); 

});

8. The subscribe CheckBox control renders two sibling HTML tags:
<input> and <label>, as follows:

<input id="chkSubscribe" type="checkbox" 

name="chkSubscribe" /><label 

for="chkSubscribe">Subscribe to 

newsletter</label>

Hence, the jQuery code uses .next().html() to determine the
text value of the CheckBox control as follows:

var strSubscribe = ""; 

if ($("#

<%=chkSubscribe.ClientID%>").is(":checked")) { 

   strSubscribe = $("#



<%=chkSubscribe.ClientID%>").next().html(); 

}

If the checkbox is unchecked, strSubscribe is an empty string.

9. Finally, all the retrieved values of the controls are appended to
the strDisplayMsg string, and the script uses JavaScript's
window.confirm() command to display the confirmation dialog
box to the user. If the user clicks on OK, the form is submitted.
Clicking on Cancel prevents the form from being submitted:

var strDisplayMsg = "You are about to submit 

the following data: \r\n\r\n" + 

"Name: " + strName + "\r\n" + 

"Gender: " + strGender + "\r\n" + 

"Highest Education: " + strEducation + "\r\n" 

+ 

"Interest Areas: " + strInterest + "\r\n" + 

strSubscribe + "\r\n\r\n" + 

"Click OK to proceed" 

window.confirm(strDisplayMsg);

See also
The Selecting a control using the CSS class recipe



Selecting a control using the
CSS class
This recipe will demonstrate how to access ASP.NET controls, such
as Image, Panel, and BulletedList based on the CSSClass assigned to
them. The constructs used in this example are as follows:

Construct Type Description

$(".class") jQuery
selector

This matches all elements with
the specified CSS class.

.attr("name") OR

.attr("name", "value")

jQuery
method

This returns a string with the
required attribute value of the first
matched element. It can also be
used to set the attribute to the
required value.

.click() jQuery
event
binder

This binds a handler to the click
event of an element.

event.preventDefault() jQuery
method

This prevents the default action of
the event from being triggered.

.hide() jQuery
method

This hides the matched elements.



Construct Type Description

.is() jQuery
method

This returns a Boolean value if the
matched element satisfies a given
condition.

.next() jQuery
method

This gets the immediate sibling of
an element.

.show() jQuery
method

This displays the matched
elements.

.toggle() jQuery
method

This displays or hides the
matched elements.

Getting ready
Let's access the ASP.NET controls using CssClass:

1. To demonstrate the CSS selector in jQuery, we will build a
simple application that displays a List of Questions. The
answers can be seen by clicking on the respective plus + icon
next to the question:



The page also has a checkbox on top. By clicking on this
checkbox, all the answers will be displayed, as shown in the
following screenshot:



2. By clicking on the minus - icon, the corresponding answer can
be collapsed.

3. To get started, create an ASP.NET Web Application project
using the Empty template, and name the project Recipe2 (or
any other suitable name).

4. Add a Web Form to the project and name it Default.aspx.
5. Create a Scripts folder and add jQuery files (debug and release

versions of a library) to it.
6. Include the jQuery library in the form using either the <script>

block or the ScriptManager control, as described in Chapter 1,
Getting Started with jQuery in ASP.NET.



7. Create an images folder in the project and include images for the
plus and minus icons.

8. Now, drag and drop ASP.NET controls by navigating to the
Toolbox | Standard controls to create the required form, as
shown in the preceding screenshot.

9. The HTML markup for the form is as follows:
<asp:CheckBox ID="chkShowAll" runat="server" 

Text="Show all answers" /> 

<br /><br /> 

<asp:ImageButton ID="imgExpand1" 

runat="server" CssClass="image" 

ImageUrl="~/images/plus.png"/> 

<asp:Literal ID="litQuestion1" 

runat="server">What is SDLC?</asp:Literal> 

<asp:Panel ID="pnlAnswer1" CssClass="answer" 

runat="server"> 

  The systems development life cycle …

</asp:Panel> 

<br /> 

<asp:ImageButton ID="imgExpand2" 

runat="server" CssClass="image" 

ImageUrl="~/images/plus.png"/> 

<asp:Literal ID="litQuestion2" 

runat="server">List at least 3 models of 

software development.</asp:Literal> 

<asp:BulletedList ID="bltAnswer2" 

CssClass="answer" runat="server"> 

  <asp:ListItem>Waterfall model</asp:ListItem> 

  <asp:ListItem>Spiral model</asp:ListItem> 

  <asp:ListItem>Rapid Application Development 

(RAD) model</asp:ListItem> 

</asp:BulletedList> 

<br /> 

<asp:ImageButton ID="imgExpand3" 

runat="server" CssClass="image" 

ImageUrl="~/images/plus.png"/> 

<asp:Literal ID="litQuestion3" 

runat="server">List the essential steps in 

software development.</asp:Literal> 

<asp:BulletedList ID="bltAnswer3" 

CssClass="answer" runat="server"> 

  <asp:ListItem>Requirements 

Gathering</asp:ListItem> 

  <asp:ListItem>Design</asp:ListItem> 

  <asp:ListItem>Implementation</asp:ListItem> 



  <asp:ListItem>Evaluation</asp:ListItem> 

</asp:BulletedList>

10. Add the following CSS styles to the page:
.answer { 

  color: blue; 

} 

.image { 

  height: 12 px; 

  width: 12 px; 

  margin - right: 5 px; 

}

How to do it…
Create a <script> block after the reference to the jQuery library has
been added, and add the following code:

<script type="text/javascript"> 

$(document).ready(function() { 

  $(".answer").hide(); 

  $("#<%=chkShowAll.ClientID%>").click(function() 

{ 

    if ($("#

<%=chkShowAll.ClientID%>").is(":checked")) { 

      $(".answer").show(); 

      $(".image").attr("src", "images/minus.png"); 

    } else { 

      $(".answer").hide(); 

      $(".image").attr("src", "images/plus.png"); 

    } 

  }); 

  $(".image").click(function(evt) { 

    $(this).next(".answer").toggle(); 

    var src = ($(this).attr("src") === 

"images/plus.png") ? "images/minus.png" : 

"images/plus.png"; 

    $(this).("src", src); 

    evt.preventDefault(); 

  }); 

}); 

</script>



How it works…
Using the CssClass to select ASP.NET controls can be done in the
following steps:

1. On running the application by pressing F5, all page elements
with the answer CssClass are hidden by executing the following
statement:

$(".answer").hide();

Note
Note: Because of this, once the page loads, only questions
are visible.

2. When you click on the checkbox on the top of the page, its click
event is triggered. An event handler is tied to the click event as
follows:

$("#<%=chkShowAll.ClientID%>").click(function 

() {…});

3. In the preceding click event handler, firstly, the status of the
checkbox is determined using the checked filter. If the checkbox
is checked, then the answers are shown and the plus icons are
changed to minus icons:

if ($("#

<%=chkShowAll.ClientID%>").is(":checked")) { 

  $(".answer").show(); 

  $(".image").attr("src", "images/minus.png"); 

}

If the checkbox is unchecked, the answers are hidden and the
minus icons are updated to plus icons:



else { 

  $(".answer").hide(); 

  $(".image").attr("src", "images/plus.png"); 

}

Thus, using the CSS selector on the answer and the image
elements, the required contents can be shown or hidden.

4. In addition to this, the user can click on the plus and minus icons
to expand or collapse the answers, respectively. Hence, a click
event is tied to the image elements using the CSS selector for
the images, as follows:

$(".image").click(function (evt) {…});

In the preceding event handler, the answer element following the
image is toggled to show or hide, as follows:

$(this).next(".answer").toggle(); 

Lastly, the image is also toggled—that is, plus to minus or minus
to plus, using the .attr() method:

var src = ($(this).attr("src") === 

"images/plus.png") ? "images/minus.png" : 

"images/plus.png"; 

$(this).attr("src", src);

Lastly, to prevent the image click event from submitting the
form, evt.preventDefault() is executed.

See also
The Selecting an element by its position in the DOM recipe



Selecting a control using HTML
tag
This recipe demonstrates how to access ASP.NET controls using the
corresponding HTML tag generated at runtime. We will demonstrate
how to use the GridView control, which generates the table HTML
tag. Each row of the GridView renders the tr HTML tag. This
example uses the following constructs:

Construct Type Description

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag

$(this) jQuery
object

This refers to the current jQuery
object

.addClass() jQuery
method

This adds the specified CSS class
to each matched element

[attribute$="value"] jQuery
selector

This selects an element with the
specified attribute, ending with the
string "value"

:checkbox jQuery
selector

This selects only checkbox
elements from the matched
elements



Construct Type Description

.click() jQuery
event
binder

This binds a handler to the click
event of an element

.find() jQuery
method

This finds all elements matching the
filter

.is() jQuery
method

This returns a Boolean value if the
matched element satisfies a given
condition

.parents() jQuery
method

This selects the ancestors of the
matched elements in the DOM tree

.removeClass() jQuery
method

This removes the specified CSS
class from each matched element

Getting ready
Let's select ASP.NET controls using HTML tag:

1. In this example, we will create a web page to display a List of
Suppliers from the Northwind database in a GridView control,
as shown in the following screenshot:



2. Each row in the GridView has a CheckBox control in the first
column. By selecting the checkbox, the respective row is
highlighted, as shown in the following screenshot:

Note



Likewise, by unchecking the checkbox, the highlighting is
removed.

3. To get started, create an ASP.NET Web Application project
using the Empty template, and name the project Recipe3 (or
any other suitable name).

4. Add a Web Form to the project and name it Default.aspx.
5. Create a Scripts folder and add jQuery files (debug and release

versions of a library) to it.
6. Include the jQuery library in the form using either the <script>

block or the ScriptManager control, as described in Chapter 1,
Getting Started with jQuery in ASP.NET.

7. Open Default.aspx in the Design mode, and drag and drop a
GridView control by navigating to Toolbox | Data.

8. Populate the gridview with the Suppliers data from the
Northwind database using LINQ by following Steps 9 to 15. If
you are familiar with using LINQ, proceed to Step 16 to add the
checkbox field and required columns to the gridview markup.

Tip
Installing the Northwind database

Northwind is an open source database that can be
downloaded from: https://northwinddatabase.codeplex.com.

Read more about: How to install sample databases from the
MSDN page at: https://msdn.microsoft.com/en-
us/library/8b6y4c7s.aspx.

9. Add the App_Code folder to the project by right-clicking on the
project and navigating to Add | Add ASP.NET Folder |
App_Code.

https://northwinddatabase.codeplex.com/
https://msdn.microsoft.com/en-us/library/8b6y4c7s.aspx


10. Right-click on the App_Code folder, and go to Add | Add New
Item. From the dialog box, select LINQ to SQL Classes, and
name the file Northwind.dbml, as shown in the following
screenshot. Click on the Add button to proceed:

11. Open Northwind.dbml in the designer. Connect to the Northwind
database, running on MS SQL Server using Server Explorer.
Drag and drop the Suppliers table onto the designer, as shown
in the following screenshot:



12. Now, open the Default.aspx web form in the Design mode, and
click on the GridView control. A small arrow icon appears in the
top-right corner of the GridView control, and when you click on
it, the GridView Tasks submenu opens up, as shown in the
following screenshot:



13. In the GridView Tasks submenu, go to Choose Data Source |
<New data source…>. From the Data Source Configuration
Wizard, select LINQ, and click on OK.

14. This will launch the Configure Data Source dialog box. From
the drop-down menu, select the
Recipe3.App_Code.NorthwindDataContext option, and click
on Next.



Tip
Note that, if the NorthwindDataContext does not appear in
the drop-down menu, then add System.Data.Linq to the
system.web/compilation/assemblies element in web.config,
as follows:

<system.web> 

  <compilation debug="true"> 

    <assemblies> 

      <add assembly="System.Data.Linq, 

Version=4.0.30319.17929, Culture=neutral, 

PublicKeyToken=b77a5c561934e089" /> 

    </assemblies> 

  </compilation> 

</system.web>



15. Check the columns from the Suppliers table that need to be
displayed in the GridView, or select * to retrieve all columns, and
click on Finish:

16. Open Default.aspx in the Source mode, and update the markup
of the gridview, as follows, to add a CheckBox control as a
TemplateField in the first column. We will also limit the display
to a few important columns. Also, change the ID of the GridView
to gvSupplierList:

<asp:GridView ID="gvSupplierList" 

runat="server" AutoGenerateColumns="False" 

DataKeyNames="SupplierID" 

DataSourceID="LinqDataSource1"> 

  <Columns> 

    <asp:TemplateField> 

      <ItemTemplate> 

        <asp:CheckBox ID="chkSelect" 

runat="server" /> 

      </ItemTemplate> 

    </asp:TemplateField> 



    <asp:BoundField DataField="SupplierID" 

HeaderText="SupplierID" InsertVisible="False" 

ReadOnly="True" SortExpression="SupplierID" /> 

    <asp:BoundField DataField="CompanyName" 

HeaderText="CompanyName" 

SortExpression="CompanyName" /> 

    <asp:BoundField DataField="Address" 

HeaderText="Address" SortExpression="Address" 

/> 

    <asp:BoundField DataField="City" 

HeaderText="City" SortExpression="City" /> 

    <asp:BoundField DataField="Region" 

HeaderText="Region" SortExpression="Region" /> 

    <asp:BoundField DataField="PostalCode" 

HeaderText="PostalCode" 

SortExpression="PostalCode" /> 

    <asp:BoundField DataField="Country" 

HeaderText="Country" SortExpression="Country" 

/> 

  </Columns> 

</asp:GridView>

17. To enable paging and sorting on the GridView (optional), from
the GridView Tasks submenu, check the Enable Paging and
Enable Sorting options as shown in the following screenshot:

18. Add the following <style> to the <head> element of the web form:
<style> 

  .highlight{ 



    background-color:darkgrey; 

  } 

</style>

Since we are using Integrated Security, the windows account should
be given permission to access the Northwind database, as shown in
the following steps:

1. In the SQL Server Object Explorer dialog box, go to
Databases | Northwind | Security | Users. Right-click on
Users and click on New User, as shown in the following
screenshot:



2. This will launch the User-New dialog box. From the drop-down
menu, change User type to Windows user. Go the User name
option, and select the windows account that you have used to
log in to the system, as shown in the following screenshot:

3. In the same dialog box, in the left-hand side panel, click on the
Owned Schemas tab. Check db_owner, as shown in the
following screenshot:



4. Next, in the left-hand side panel, click on the Membership tab.
Check db_owner, as shown in the following screenshot:



5. Click on OK to save.

How to do it…
Add the following jQuery code to a <script> block after the jQuery
library is included in the page:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("table[id$=

<%=gvSupplierList.ClientID%>").find("input:checkbo

x").click( 

    function() { 

      if ($(this).is(":checked")) 

        



$(this).parents("tr").addClass("highlight"); 

      else 

        

$(this).parents("tr").removeClass("highlight"); 

    }); 

}); 

</script>

How it works…
Selecting ASP.NET controls using HTML tag can be done in the
following steps:

1. In this example, the gridview is selected using the <table>
HTML tag that it generates at runtime. Each row of the GridView
control is rendered as a tr HTML tag. This can be seen by
viewing the source at runtime:

2. Since there can be more than one <table> element on the page,
the table elements are filtered using id. Once the required
<table> element—that is, the GridView control is selected, the
CheckBox control in the first column is matched using the
.find("input:checkbox") selector. A click event handler is tied
to the CheckBox control as follows:

$("table[id$=

<%=gvSupplierList.ClientID%>]").find("input:ch

eckbox").click(function(){…});



3. After the click event handler is tied to the CheckBox elements,
the next task is to determine whether the checkbox has been
checked or unchecked using the :checked selector as follows:

if ($(this).is(":checked"))

4. If the checkbox is checked, then its parent table row is selected
using the .parents("tr") selector. Next, the highlight CSS
class is tied to this table row as follows:

$(this).parents("tr").addClass("highlight");

5. However, if the checkbox is unchecked, the highlight needs to
be removed. This can be done using the .removeClass() method
on the respective table row, as follows:

$(this).parents("tr").removeClass("highlight")

;

See also
The Selecting a control using an ID and displaying its value
recipe



Selecting a control by its
attribute
In this recipe, we will select ASP.NET controls based on a particular
attribute they have. The demonstration uses the NavigateUrl
property of ASP.NET Hyperlink controls, which is rendered as an
href attribute of the anchor tag. The constructs used are summarized
as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based
on its ID

.addClass() jQuery
selector

This adds the specified CSS
class to each matched element

[attribute*="value"] jQuery
selector

This selects an element with
the specified attribute
containing the string "value"

.click() jQuery
event
binder

This binds a handler to the
click event of an element



Construct Type Description

event.preventDefault() jQuery
method

This prevents the default action
of the event from being
triggered

.focus() jQuery
event
binder

This triggers the focus event of
an element or binds an event
handler to the focus JavaScript
event

.removeClass() jQuery
method

This removes the specified
CSS class from each matched
element

.toLowerCase() JavaScript
function

This converts a string to
lowercase characters

.val() jQuery
method

This returns the value of the
first matched element or sets
the value of every matched
element

Getting ready
Let's create a web page where we will retrieve controls using their
attributes:



1. Consider the web page in the following screenshot:

2. The web page consists of a list of Hyperlink controls. The
Search textbox on the top of the page allows you to search the
URLs set in the NavigateUrl property of the Hyperlink controls
by a keyword. If a particular keyword is present in the URL link,
the corresponding link is highlighted, as shown in the following
screenshot:



3. If another keyword is searched, a new set of links matching the
new search keyword are highlighted, as follows:



4. To get started, create an ASP.NET Web Application project
using the Empty template, and name the project Recipe4 (or
any other suitable name).

5. Add a Web Form to the project and name it Default.aspx.
6. Create a Scripts folder and add jQuery files (debug and release

versions of a library) to it.
7. Include the jQuery library in the form using either the <script>

block or the ScriptManager control, as described in Chapter 1,
Getting Started with jQuery in ASP.NET.

8. Open Default.aspx in the Design mode, and drag and drop the
required controls by navigating to Toolbox | Standard to create
the form with the following markup:

<asp:TextBox ID="txtKeyword" runat="server">

</asp:TextBox> 

<asp:Button ID="btnSearch" runat="server" 

Text="Search" /> 

<br /> 

<ul> 

  <li> 

    <asp:HyperLink runat="server" 

NavigateUrl="http://www.w3schools.com/jquery/" 

Target="_blank">W3 Schools 

Tutorials</asp:HyperLink> 

  </li> 

  <li> 

    <asp:HyperLink runat="server" 

NavigateUrl="https://learn.jquery.com/" 

Target="_blank">jQuery Learning 

Center</asp:HyperLink> 

  </li> 

  <li> 

    <asp:HyperLink runat="server" 

NavigateUrl="https://msdn.microsoft.com/en-

us/library/hh396380.aspx" 

Target="_blank">Client-Side Web Development 

for Modern Browsers</asp:HyperLink> 

  </li> 

  <li> 

    <asp:HyperLink runat="server" 

NavigateUrl="https://msdn.microsoft.com/en-

us/library/bb398874(VS.100).aspx" 

Target="_blank">ASP.NET AJAX 

Overview</asp:HyperLink> 



  </li> 

  <li> 

    <asp:HyperLink runat="server" 

NavigateUrl="http://weblogs.asp.net/scottgu/jq

uery-and-microsoft" Target="_blank">ScottGu's 

Blog: jQuery and Microsoft</asp:HyperLink> 

  </li> 

  <li> 

    <asp:HyperLink runat="server" 

NavigateUrl="https://msdn.microsoft.com/en-

us/magazine/dd453033.aspx" 

Target="_blank">Explore Rich Client Scripting 

with jQuery</asp:HyperLink> 

  </li> 

  <li> 

    <asp:HyperLink runat="server" 

NavigateUrl="http://api.jquery.com/" 

Target="_blank">jQuery API 

Documentation</asp:HyperLink> 

  </li> 

</ul>

9. In the <head> element of the page, add the following style:
<style type="text/css"> 

  .highlight{ 

    background-color:yellow; 

  } 

</style>

How to do it…
Include the following jQuery code in the page in a <script> block
after including the jQuery library:

<script type="text/javascript"> 

  $(document).ready(function() { 

    $("table[id$=

<%=gvSupplierList.ClientID%>").find("input:checkbo

x").click( 

      function() { 

        if ($(this).is(":checked")) 

          

$(this).parents("tr").addClass("highlight"); 



        else 

          

$(this).parents("tr").removeClass("highlight"); 

      }); 

  }); 

</script>

How it works…
The selection of controls by attribute works as follows:

1. When the page is launched, the search textbox receives focus
by calling its focus event using the following code:

$("#<%=txtKeyword.ClientID%>").focus();

2. Simultaneously, an event handler is attached to the click event
of the Search button:

$("#<%=btnSearch.ClientID %>").click(function 

(evt) {…}

3. The event handler reads the searched keyword from the textbox
and converts it to a lowercase string:

var strKeyword = $("#

<%=txtKeyword.ClientID%>").val().toLowerCase()

;

4. Before we begin with highlighting the matched anchor tags, the
CSS class of all anchor tags on the page is reset using the
$("a") selector:

$("a").removeClass("highlight");

5. A search by its attribute is done on all anchor tags using their
href attributes. If the href attribute contains the search keyword,
the link is highlighted by attaching the respective CSS class:

$('a[href*= "' + strKeyword + 

'"]').addClass("highlight");



Lastly, evt.preventDefault() prevents the page from submitting
because of the button click event.

See also
The Selecting a control using HTML tag recipe



Selecting an element by its
position in the DOM
This recipe demonstrates how to use an element's position with
respect to its parent when you access it in the DOM tree. We will use
the ASP.NET ListBox control for this purpose. The constructs used in
this example are as follows:

Construct Type Description

$("#id > *") jQuery
selector

This selects all descendant
elements of the control with the
specified ID.

$("#id :first-child") jQuery
selector

This selects the first child element
of the control with the specified
ID.

$("#id :last-child") jQuery
selector

This selects the last child element
of the control with the specified
ID.

$("#id :lt(i)") jQuery
selector

This selects all child elements of
the control with the specified ID
that have an index less than i.
Note that the index starts at zero.



Construct Type Description

$("#id :gt(i)") jQuery
selector

This selects all child elements of
the control with the specified ID
that have an index greater than i.
Note that the index starts at zero.

$("#id :nth-child(i)") jQuery
selector

This selects the child element of
the control with the specified ID
that has an index i. Note that the
index for the nth child starts at 1.

$("#id :nth-

child(even)")

jQuery
selector

This selects all the child elements
of the control with the specified ID
that have even indices.

$("#id :nth-

child(odd)")

jQuery
selector

This selects all the child elements
of the control with the specified ID
that have odd indices.

.addClass() jQuery
method

This adds the specified CSS class
to each matched element.

.click() jQuery
event
binder

This binds a handler to the click
event of an element.



Construct Type Description

event.preventDefault() jQuery
method

This prevents the default action of
the event from being triggered.

.removeClass() jQuery
method

This removes the specified CSS
class from each matched element.

.val() jQuery
method

This returns the value of the first
matched element or sets the
value of every matched element.

Getting ready
Let's create a webpage that selects elements based on their
position:

1. Consider the following web page that consists of a list box
populated with data from the Suppliers table from the Northwind
database, as follows:



2. There is a dropdown list at the top of the page that allows you to
select items in the list box, depending on their position in the
DOM tree. The dropdown list has options to select the first, last,
items less than or greater than a particular index, the nth item,
as well as odd or even items, as shown in the following
screenshot:



Note
Note that we will be using hardcoded indices in this recipe.
In a practical scenario, it is preferable to provide a textbox or
a dropdown list to enable the user to enter or select the
required index.

3. To demonstrate the working of the form, consider the scenario in
which Odd Items is selected from the dropdown list. In this
case, only odd indexed items from the list box are highlighted,
as shown here:



4. To get started, create an ASP.NET Web Application project
using the Empty template, and name the project Recipe5 (or
any other suitable name).

5. Add a Web Form to the project and name it Default.aspx.
6. Create a Scripts folder and add jQuery files (debug and release

versions of a library) to it.
7. Include the jQuery library in the form using either the <script>

block or the ScriptManager control, as described in Chapter 1,
Getting Started with jQuery in ASP.NET.

8. Open the Default.aspx web form in the Design mode and drag
and drop a ListBox control by navigating to Toolbox |
Standard.

9. Populate the listbox with the Suppliers data from the Northwind
database using LINQ by following Steps 10 to 18. If you are
familiar with using LINQ, proceed to step 19.

10. Add the App_Code folder to the project by right-clicking on the
project and navigating to Add | Add ASP.NET Folder |
App_Code.

11. Right-click on the App_Code folder, and go to Add | Add New
Item. From the dialog box, select LINQ to SQL Classes, and
name the file Northwind.dbml.

12. Open Northwind.dbml in the designer. Connect to the Northwind
database running on MS SQL Server using Server Explorer.
Drag and drop the Suppliers table on the designer, as shown
here:



13. Now, open the Default.aspx web form in the Design mode, and
click on the ListBox control. A small arrow icon appears in the
top-right corner of the ListBox control, and when you click on it,
the ListBox Tasks submenu opens up, as shown in the
following screenshot:



14. From the ListBox Tasks submenu, select Choose Data
Source. This launches the Data Source Configuration
Wizard, as shown in the following screenshot. Select <New
data source…> from the first drop-down menu:



15. This will prompt you to select Choose a Data Source Type.
Select LINQ, and click on OK:



16. On being prompted to select Choose a Context Object, choose
Recipe5.App_Code.NorthwindDataContext from the drop-
down menu, and click on Next:



Tip
Note that if the NorthwindDataContext does not appear in
the drop-down menu, add System.Data.Linq to the
system.web/compilation/assemblies element in web.config,
as follows:

<system.web> 

  <compilation debug="true"> 

    <assemblies> 

      <add assembly="System.Data.Linq, 

Version=4.0.30319.17929, Culture=neutral, 

PublicKeyToken=b77a5c561934e089" /> 

    </assemblies> 

  </compilation> 

</system.web>



17. Check the SupplierID and CompanyName columns from the
Suppliers table, and click on Finish:

18. Set the display field of the list box to CompanyName and the value
field to SupplierID, as shown in the following screenshot, and
click on OK:



19. The following code is the complete markup of the page after
completing the preceding steps:

<asp:Label ID="lblSelectItems" runat="server" 

Text="Choose the type of selection:">

</asp:Label> 

<br /> 

<asp:DropDownList ID="ddlType" runat="server"> 

  <asp:ListItem Text="--Select--" Value="0">

</asp:ListItem> 

  <asp:ListItem Text="First" Value="1">

</asp:ListItem> 

  <asp:ListItem Text="Last" Value="2">

</asp:ListItem> 

  <asp:ListItem Text="Less Than" Value="3">

</asp:ListItem> 

  <asp:ListItem Text="Greater Than" Value="4">

</asp:ListItem> 

  <asp:ListItem Text="Nth Item" Value="5">

</asp:ListItem> 

  <asp:ListItem Text="Even Items" Value="6">

</asp:ListItem> 

  <asp:ListItem Text="Odd Items" Value="7">



</asp:ListItem> 

</asp:DropDownList> 

<asp:Button ID="btnSelect" runat="server" 

Text="Select Items" /> 

<br /><br /> 

<asp:ListBox ID="lstSuppliers" runat="server" 

Width="300px" Height="450px" 

DataSourceID="LinqDataSource1" 

DataTextField="CompanyName" 

DataValueField="SupplierID"></asp:ListBox> 

<asp:LinqDataSource ID="LinqDataSource1" 

runat="server" 

ContextTypeName="Recipe5.App_Code.NorthwindDat

aContext" EntityTypeName="" Select="new 

(SupplierID, CompanyName)" 

TableName="Suppliers"></asp:LinqDataSource>

20. In the <head> element of the page, include the following style to
highlight the selected child items:

<style type="text/css"> 

  .highlight{ 

    background-color:yellow; 

  } 

</style>

How to do it…
Add the following jQuery code to a <script> block after the library is
included in the page:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("#

<%=btnSelect.ClientID%>").click(function(evt) { 

    $("#<%=lstSuppliers.ClientID%> > 

*").removeClass("highlight"); 

    var iType = $("#<%=ddlType.ClientID%>").val(); 

    switch (iType) { 

      case "1": 

        $("#<%=lstSuppliers.ClientID%> :first-

child").addClass("highlight"); 

        break; 

      case "2": 



        $("#<%=lstSuppliers.ClientID%> :last-

child").addClass("highlight"); 

        break; 

      case "3": 

        $("#<%=lstSuppliers.ClientID%> 

:lt(4)").addClass("highlight"); 

        break; 

      case "4": 

        $("#<%=lstSuppliers.ClientID%> 

:gt(7)").addClass("highlight"); 

        break; 

      case "5": 

        $("#<%=lstSuppliers.ClientID%> :nth-

child(5)").addClass("highlight"); 

        break; 

      case "6": 

        $("#<%=lstSuppliers.ClientID%> :nth-

child(even)").addClass("highlight"); 

        break; 

      case "7": 

        $("#<%=lstSuppliers.ClientID%> :nth-

child(odd)").addClass("highlight"); 

        break; 

      default: 

        alert("Please select the type of 

element"); 

    } 

    evt.preventDefault(); 

  }); 

}); 

</script>

How it works…
The web page works as follows:

1. Run the application and right-click on the page in the browser to
go to View Source. At runtime, the ListBox control will be
rendered as the select and option HTML elements, as shown
here:



2. The entire action of the page lies in the event handler for the
click event of the Select Items button:

$("#<%=btnSelect.ClientID%>").click(function 

(evt) {…});

When you click on this button, first of all, the CSS style of all
child elements of the ListBox control (the option element) is
reset using the removeClass function:

$("#<%=lstSuppliers.ClientID%> > 

*").removeClass("highlight");

3. The selected value of the DropDownList control is retrieved to
find the type of selection required:

var iType = $("#<%=ddlType.ClientID%>").val();

4. A switch-case statement helps you to choose different
selections of the child elements based on the item selected in
the dropdown list:

1. If the item selected in the dropdown list is First, the first
option element is highlighted using the following code:

$("#<%=lstSuppliers.ClientID%> :first-

child").addClass("highlight");

2. If the item selected is Last, the last option element is
highlighted using this code:

$("#<%=lstSuppliers.ClientID%> :last-

child").addClass("highlight");



3. If the item selected is Less Than, all option elements that
are less than index 4—that is, items with indices 0 to 3, are
highlighted using the following code:

$("#<%=lstSuppliers.ClientID%> 

:lt(4)").addClass("highlight");

Note
The index is hard coded here for simplicity.

4. If the item selected is Greater Than, all option elements
that are greater than index 7—that is, items excluding those
with indices 0 to 7, are highlighted using this code:

$("#<%=lstSuppliers.ClientID%> 

:gt(7)").addClass("highlight");

Note
The index is hardcoded here for simplicity.

5. If the item selected is Nth Item, the fifth option element is
highlighted using the following code:

$("#<%=lstSuppliers.ClientID%> :nth-

child(5)").addClass("highlight");

Note
The index is hardcoded here for simplicity.



6. If the item selected is Even Items, all option elements with
even indices are highlighted using this code:

$("#<%=lstSuppliers.ClientID%> :nth-

child(even)").addClass("highlight");

7. If the item selected is Odd Items, all option elements with
odd indices are highlighted using the following code:

$("#<%=lstSuppliers.ClientID%> :nth-

child(odd)").addClass("highlight");

5. Lastly, executing evt.preventDefault() prevents the submission
of the page because of the button click event.

See also
The Selecting a control using an ID and displaying its value
recipe



Enabling/disabling controls on
a web form
This recipe demonstrates how to enable/disable controls dynamically
on a web form in response to events triggered by other controls on
the form. The constructs used in this example are as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on its
ID

$(this) jQuery
object

This refers to the current jQuery
object

:checked jQuery
selector

This selects checked input elements

.click() jQuery
event
binder

This binds a handler to the click
event of an element

.find() jQuery
method

This finds all elements matching the
filter



Construct Type Description

.is() jQuery
method

This returns a Boolean value if the
matched element satisfies a given
condition

prop(propertyName)

or

.prop(propertyName,

value)

jQuery
method

This returns the value of the specified
property for the first matched element
or sets the value of the specified
property for all matched elements

.val() jQuery
method

This returns the value of the first
matched element or sets the value of
every matched element

Getting ready
Let's create a job application form that shows enabling and disabling
of ASP.NET controls:

1. We will build a simple job application form for a company, as
shown here:



2. Clicking on certain controls disables other controls on the form,
as shown in the following screenshot:



3. To get started, create an ASP.NET Web Application project
using the Empty template, and name the project Recipe6 (or
any other suitable name).

4. Add a Web Form to the project and name it Default.aspx.
5. Create a Scripts folder and add jQuery files (debug and release

versions of a library) to it.
6. Include the jQuery library in the form using either the <script>

block or the ScriptManager control, as described in Chapter 1,
Getting Started with jQuery in ASP.NET.

7. Open the Default.aspx web form in the Design mode, and drag
and drop the required controls by navigating to Toolbox |
Standard to create the web form, as shown in the preceding
screenshots. The markup of the web form is as follows:



<table> 

  <tr> 

    <td> 

      <asp:Label ID="lblName" runat="server" 

Text="Name"></asp:Label> 

    </td> 

    <td> 

      <asp:TextBox ID="txtName" runat="server" 

Width="220px"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblPermAddr" 

runat="server" Text="Permanent Address">

</asp:Label> 

    </td> 

    <td> 

      <asp:TextBox ID="txtPermAddr" 

runat="server" Width="220px" 

TextMode="MultiLine"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblMailingAddr" 

runat="server" Text="Mailing Address" /> 

    </td> 

    <td> 

      <asp:CheckBox ID="chkMailingAddr" 

runat="server" Text="Same as above" /> 

      <br /> 

      <asp:TextBox ID="txtMailingAddr" 

runat="server" Width="220px" 

TextMode="MultiLine"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblTravel" runat="server" 

Text="Willing to travel?" /> 

    </td> 

    <td> 

      <asp:RadioButtonList ID="rdTravel" 

runat="server"> 

        <asp:ListItem Text="Yes" Value="Yes">

</asp:ListItem> 



        <asp:ListItem Text="No" Value="No">

</asp:ListItem> 

      </asp:RadioButtonList> 

      <br /> 

      <asp:DropDownList ID="ddlTravel" 

runat="server"> 

        <asp:ListItem Text="10%">

</asp:ListItem> 

        <asp:ListItem Text="25%">

</asp:ListItem> 

        <asp:ListItem Text="50%">

</asp:ListItem> 

        <asp:ListItem Text="75%">

</asp:ListItem> 

      </asp:DropDownList> 

      <br /> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblMode" runat="server" 

Text="Mode of Contact" /> 

    </td> 

    <td> 

      <asp:CheckBox ID="chkEmail" 

runat="server" Text="Email" Value="Email" 

Checked="true" /> 

      <asp:CheckBox ID="chkPhone" 

runat="server" Text="Phone" Value="Phone" 

Checked="true" /> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblEmail" runat="server" 

Text="Email" /> 

    </td> 

    <td> 

      <asp:TextBox ID="txtEmail" 

runat="server" Width="220px"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblPhone" runat="server" 

Text="Phone" /> 

    </td> 

    <td> 



      <asp:TextBox ID="txtPhone" 

runat="server" Width="220px"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"> 

      <asp:Button ID="btnSubmit" 

runat="server" Text="Submit" /> 

      <asp:Button ID="btnReset" runat="server" 

Text="Reset" /> 

    </td> 

  </tr> 

</table>

How to do it…
Include the following jQuery code in a <script> block after the library
is included in the page:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("#

<%=chkMailingAddr.ClientID%>").click(function() { 

    if ($(this).is(":checked")) 

      $("#

<%=txtMailingAddr.ClientID%>").prop("disabled", 

true); 

    else 

      $("#

<%=txtMailingAddr.ClientID%>").prop("disabled", 

false); 

  }); 

  $("#<%=rdTravel.ClientID%>").click(function() { 

    var strTravel = 

$(this).find(":checked").val(); 

    if (strTravel == "No") 

      $("#

<%=ddlTravel.ClientID%>").prop("disabled", true); 

    else 

      $("#

<%=ddlTravel.ClientID%>").prop("disabled", false); 

  }); 

  $("#<%=chkEmail.ClientID%>").click(function() { 

    if (!$(this).is(":checked")) 



      $("#

<%=txtEmail.ClientID%>").prop("disabled", true); 

    else 

      $("#

<%=txtEmail.ClientID%>").prop("disabled", false); 

  }); 

  $("#<%=chkPhone.ClientID%>").click(function() { 

    if (!$(this).is(":checked")) 

      $("#

<%=txtPhone.ClientID%>").prop("disabled", true); 

    else 

      $("#

<%=txtPhone.ClientID%>").prop("disabled", false); 

  }); 

}); 

</script>

How it works…
The web page works as follows:

1. Save the application and launch it using F5. In the Mailing
Address section, on checking the Same as above field, the
Mailing Address textbox is disabled as follows:

Note
Similarly, on unchecking the field, the Mailing Address
textbox is enabled.

2. This is made possible by writing an event handler for the click
event of the CheckBox control. The click event is triggered when
the checkbox is either checked or unchecked:



$("#

<%=chkMailingAddr.ClientID%>").click(function 

() {…});

3. In the preceding event handler, firstly, it is determined whether
the field is checked using the following code:

if ($(this).is(":checked"))

If the preceding condition is true, in order to disable the Mailing
Address textbox, the prop() method is used to assign a true
value to its disabled property as follows:

$("#

<%=txtMailingAddr.ClientID%>").prop("disabled"

, true);

Similarly, if the checkbox is unchecked, the Mailing Address
textbox is enabled by assigning a false value to its disabled
property as follows:

$("#

<%=txtMailingAddr.ClientID%>").prop("disabled"

, false);

4. For the Willing to Travel radio button, when the No option is
selected, the dropdown list below the field is disabled, as shown
in the following figure:

5. This is made possible by attaching an event handler to the click
event of the RadioButtonList:

$("#<%=rdTravel.ClientID%>").click(function () 

{…});



6. When the preceding event handler is invoked, the selected
value is first determined using this code:

var strTravel = 

$(this).find(":checked").val();

If the selected value is No, the dropdown list is disabled by
attaching a true value to its disabled property, as follows:

if (strTravel == "No") 

  $("#

<%=ddlTravel.ClientID%>").prop("disabled", 

true);

Otherwise, the dropdown list is enabled by attaching a false
value to its disabled property, as follows:

else 

  $("#

<%=ddlTravel.ClientID%>").prop("disabled", 

false);

7. When the two checkbox controls in the Mode of Contact field
are unchecked, the corresponding textbox field is disabled, that
is, unchecking the Email checkbox disables the Email textbox.
Similarly, unchecking the Phone checkbox disables the Phone
textbox as follows:

8. This is made possible by attaching respective event handlers to
the Email and Phone checkbox controls as follows:

$("#<%=chkEmail.ClientID%>").click(function () 

{…}); 

$("#<%=chkPhone.ClientID%>").click(function () 

{…});



9. In the preceding event handlers, it is first required to determine
whether the respective CheckBox control is unchecked using the
following code:

if (!$(this).is(":checked"))

If the respective checkbox is unchecked, then the TextBox
control is disabled by attaching the true value to the disabled
property of the TextBox control as follows:

For the Email field:
$("#

<%=txtEmail.ClientID%>").prop("disabled", 

true);

For the Phone field:
$("#

<%=txtPhone.ClientID%>").prop("disabled", 

true);

Otherwise, the respective TextBox control is enabled by
attaching the false value to the disabled property, as follows:

For the Email field:
$("#

<%=txtEmail.ClientID%>").prop("disabled", 

false);

For the Phone field:
$("#

<%=txtPhone.ClientID%>").prop("disabled", 

false);

See also
The Selecting a control by its attribute recipe



Using selectors in MVC
applications
So far, all recipes are based on using selectors with ASP.NET web
forms. Next, we introduce an example to demonstrate the use of
selectors in an ASP.NET MVC application. The constructs used in
this example are as follows:

Construct Type Description

$(#identifier) jQuery
selector

This selects an element based on
its ID

$(this) jQuery
object

This refers to the current jQuery
object

:checked jQuery
selector

This selects checked input
elements

.click() jQuery
event
binder

This binds a handler to the click
event of an element

.css() jQuery
method

This gets the CSS property of the
first matched element or sets one
or more CSS properties for every
matched element



Construct Type Description

.each() jQuery
method

This iterates over the matched
elements and executes a function
for each element

event.preventDefault() jQuery
method

This prevents the default action of
the event from being triggered

.html() jQuery
method

This returns the HTML content of
the first matched element or sets
the HTML content of every
matched element

.prop(propertyName) or

.prop(propertyName,

value)

jQuery
method

This returns the value of the
specified property for the first
matched element or sets the
value of the specified property for
all matched elements

:radio jQuery
selector

This selects input elements of
type radio

.val() jQuery
method

This returns the value of the first
matched element or sets the
value of every matched element



Getting ready
To use selectors in a MVC application, follow these steps:

1. Let's create a simple MVC application for a Feedback Form to
be completed by a user, as shown in the following screenshot:

2. When you click on the Submit button, the validation of the form
fields is done using jQuery, and the page will throw an error
message giving the details of the fields that are required to be
completed, as shown here:



3. If all the fields are completed, the validation will go through, and
the user will see a confirmation screen, as shown here:



4. To get started, create a new project in Visual Studio by
navigating to File | New | Project. From the dialog box, select
ASP.NET Web Application, and type Recipe7 (or any other
suitable name) for the name of the application.

5. From the following dialog box, select the Empty template and
the MVC checkbox, as shown in the following screenshot, and
click on the OK button:



6. We need to add a model to the feedback form, two views
(corresponding to the two screens in the application) and a
controller. Let's start by adding a model by right-clicking on the
Models folder in Solution Explorer and navigating to New |
Class. name the class FeedbackForm.vb (VB) or FeedbackForm.cs
(C#), and add the following properties that correspond to the
fields on the feedback form:

For VB, the code is as follows:

Public Class FeedbackForm 

  Public Property Name As String 

  Public Property Email As String 

  Public Property ImprovementArea As String 

  Public Property Rating As String 

End Class

For C#, the code is as follows:



public class FeedbackForm 

{ 

  public string Name { get; set; } 

  public string Email { get; set; } 

  public string ImprovementArea { get; set; } 

  public string Rating { get; set; } 

}

7. Now, add a controller by right-clicking on the Controllers folder
in Solution Explorer and navigating to New | Controller. From
the dialog box, select MVC 5 Controller – Empty, and click on
the Add button:

8. In the following dialog box, enter DefaultController in the
Controller name field, and click on the Add button:



9. Add the following Action method in DefaultController.vb (VB)
or DefaultController.cs (C#):

For VB, the code is as follows:

Function Index() As ActionResult 

  Return View() 

End Function 

Function HandleForm(ByVal formData As 

FeedbackForm) As ActionResult 

  ViewData("Name") = formData.Name 

  ViewData("Email") = formData.Email 

  ViewData("ImprovementArea") = 

formData.ImprovementArea 

  ViewData("Rating") = formData.Rating 

  Return View() 

End Function

For C#, the code is as follows:

public ActionResult Index() { 

  return View(); 

} 

public ActionResult HandleForm(FeedbackForm 

formData) { 

  ViewData["Name"] = formData.Name; 

  ViewData["Email"] = formData.Email; 

  ViewData["ImprovementArea"] = 

formData.ImprovementArea; 

  ViewData["Rating"] = formData.Rating; 

  return View(); 

}

10. To add a view, right-click by navigating to the Views | Default
folder in Solution Explorer, and go to Add | View. In the dialog



box that is launched, enter Index for the View name, and click
on the Add button:

11. Similarly, add one more view by navigating to the Views |
Default folder, and name the view HandleForm. This view is the
confirmation page that is launched once the feedback form has
been submitted by the user.

12. Create a Scripts folder in the project and include the jQuery
library files in this folder.

13. Include the jQuery library in the Index view using the bundling
method, as described in Chapter 1, Getting Started with jQuery
in ASP.NET, or by using a <script> tag.

14. Add a <form> element to the Index view using HTML extensions
with the Razor syntax, as follows:

For VB, the code is as follows:

@Imports System.Web.Optimization 

@Code 

ViewData("Title") = "Feedback Form" 

End Code 

@Scripts.Render("~/Scripts/jquery") 

<h2>Feedback Form</h2> 

<table> 



  @Using Html.BeginForm("HandleForm", 

"Default") 

  @ 

  <text> 

    <tr> 

      <td>@Html.Label("Name")</td> 

      <td>@Html.TextBox("Name")</td> 

    </tr> 

    <tr> 

      <td>@Html.Label("Email")</td> 

      <td>@Html.TextBox("Email")</td> 

    </tr> 

    <tr> 

      <td>@Html.Label("What can we do 

better?")</td> 

      <td>@Html.TextArea("ImprovementArea", 

New With {.cols = 50, .rows = 5})</td> 

    </tr> 

    <tr> 

      <td>@Html.Label("Please rate our 

service")</td> 

      <td> 

        @Html.RadioButton("Rating", "5")

<label>&nbsp;Very Good</label> 

        @Html.RadioButton("Rating", "4")

<label>&nbsp;Good</label> 

        @Html.RadioButton("Rating", "3")

<label>&nbsp;Average</label> 

        @Html.RadioButton("Rating", "2")

<label>&nbsp;Bad</label> 

        @Html.RadioButton("Rating", "1")

<label>&nbsp;Very Bad</label> 

      </td> 

    </tr> 

    <tr> 

      <td colspan = "2"> <input id="btnSubmit" 

type="submit" value="Submit" /></td> 

    </tr> 

    <tr> 

      <td colspan = "2" > 

        <div id="ErrorMessage"></div> 

      </td> 

    </tr> 

  </text> 

  End Using 

</table>



For C#, the code is as follows:

@using System.Web.Optimization; 

@{ 

ViewBag.Title = "Feedback Form"; 

} 

@Scripts.Render("~/Scripts/jquery") 

<h2>Feedback Form</h2> 

<table> 

  @using 

(Html.BeginForm("HandleForm","Default")) 

  { 

  <tr> 

    <td>@Html.Label("Name")</td> 

    <td>@Html.TextBox("Name")</td> 

  </tr> 

  <tr> 

    <td>@Html.Label("Email")</td> 

    <td>@Html.TextBox("Email")</td> 

  </tr> 

  <tr> 

    <td>@Html.Label("What can we do better?")

</td> 

    <td>@Html.TextArea("ImprovementArea",new { 

@cols=50, @rows=5})   </td> 

  </tr> 

  <tr> 

    <td>@Html.Label("Please rate our service")

</td> 

    <td>@Html.RadioButton("Rating", "5") 

<label>&nbsp;Very Good</label> 

      @Html.RadioButton("Rating", "4") 

<label>&nbsp;Good</label> 

      @Html.RadioButton("Rating", "3") 

<label>&nbsp;Average</label> 

      @Html.RadioButton("Rating", "2") 

<label>&nbsp;Bad</label> 

      @Html.RadioButton("Rating", "1")

<label>&nbsp;Very Bad</label> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><input id="btnSubmit" 

type="submit" value="Submit" /></td> 

  </tr> 

  <tr> 

    <td colspan="2"> 



      <div id="ErrorMessage"></div> 

    </td> 

  </tr> 

  } 

</table>

15. Add the following markup to the HandleForm view:

For VB, the code is as follows:

@Code 

ViewData("Title") = "Feedback Submission" 

End Code 

<h2>Thank you for your Feedback!</h2> 

<p>We have received the following:</p> 

<p><label>Name:&nbsp;

</label>@Html.Encode(ViewData("Name"))</p> 

<p><label>Email:&nbsp;

</label>@Html.Encode(ViewData("Email"))</p> 

<p> 

  <label>What we can do better?</label><br /> 

  @Html.Encode(ViewData("ImprovementArea")) 

</p> 

<p> 

  <label>Please rate our service:&nbsp;

</label> 

  @If ViewData("Rating").Equals("5") Then 

  @:<label>Very Good</label> 

  ElseIf ViewData("Rating").Equals("4") 

  @:<label>Good</label> 

  ElseIf ViewData("Rating").Equals("3") 

  @:<label>Average</label> 

  ElseIf ViewData("Rating").Equals("2") 

  @: <label>Bad</label> 

  ElseIf ViewData("Rating").Equals("1") 

  @: <label>Very Bad</label> 

  End If 

</p> 

<p> Thank you For taking the time To write To 

us.</p>

For C#, the code is as follows:

@{ 

  ViewBag.Title = "Feedback Submission"; 



} 

<h2>Thank you for your Feedback!</h2> 

<p>We have received the following:</p> 

<p><label>Name:&nbsp;

</label>@Html.Encode(ViewData["Name"])</p> 

<p><label>Email:&nbsp;

</label>@Html.Encode(ViewData["Email"])</p> 

<p><label>What we can do better?</label><br/> 

  @Html.Encode(ViewData["ImprovementArea"]) 

</p> 

<p><label>Please rate our service:&nbsp;

</label> 

  @if (ViewData["Rating"].Equals("5")) 

  { 

    <label>Very Good</label> 

  } 

  else if (ViewData["Rating"].Equals("4")) 

  { 

    <label>Good</label> 

  } 

    else if (ViewData["Rating"].Equals("3")) 

  { 

    <label>Average</label> 

  } 

  else if  (ViewData["Rating"].Equals("2")){ 

    <label>Bad</label> 

  } 

  else if  (ViewData["Rating"].Equals("1")){ 

    <label>Very Bad</label> 

  } 

</p> 

<p> Thank you for taking the time to write to 

us.</p>

How to do it…
Include the following jQuery code in a <script> block after the library
has been included on the page:

<script type="text/javascript"> 

  $(document).ready(function () { 

    $("#btnSubmit").click(function (evt) { 

      var strMessage = ""; 

      if ($("#Name").val() == "") 



        strMessage = strMessage + "Name<br/>"; 

      if ($("#Email").val() == "") 

        strMessage = strMessage + "Email<br/>"; 

      if ($("#ImprovementArea").val() == "") 

        strMessage = strMessage + "What can we do 

better?<br/>"; 

      var bChecked = false; 

      $(":radio").each(function () { 

        if ($(this).prop("checked")){ 

          bChecked = true; 

        } 

      }); 

      if (!bChecked) 

        strMessage = strMessage + "Please rate our 

service<br/>"; 

      if (strMessage != "") { 

        strMessage = "<br/>Please complete the 

following fields: <br/><br/>" + strMessage; 

        $("#ErrorMessage").html(strMessage); 

        $("#ErrorMessage").css("color", 

"#FF0000"); 

        evt.preventDefault(); 

      } 

    }); 

  }); 

</script>

How it works…
The feedback form in MVC works as follows:

1. To run the application, right-click on the Index view in the
Solution Explorer, and select View in Browser. As a result,
the feedback form loads in the browser window.

2. When the user clicks on the Submit button, the event handler
for the button click is executed:

$("#btnSubmit").click(function (evt) {…});

3. The jQuery code validates each field in the form. A strMessage
string variable keeps track of all fields that are not filled:

var strMessage = ""; 

if ($("#Name").val() == "") 



  strMessage = strMessage + "Name<br/>"; 

if ($("#Email").val() == "") 

  strMessage = strMessage + "Email<br/>"; 

if ($("#ImprovementArea").val() == "") 

  strMessage = strMessage + "What can we do 

better?<br/>";

4. To test if the radio button list is checked, we loop through each
radio button, and use the .prop() method to determine whether
the checked property is true:

var bChecked = false; 

$(":radio").each(function() { 

  if ($(this).prop("checked")) { 

    bChecked = true; 

  } 

}); 

if (!bChecked) 

  strMessage = strMessage + "Please rate our 

service<br/>";

5. Lastly, if validation errors are found on the page—that is, if
strMessage is nonempty, the error is displayed in the div area at
the end of the form. The font color of the error message is
changed to red using the .css() method:

if (strMessage != "") { 

  strMessage = "<br/>Please complete the 

following fields: <br/><br/>" + strMessage; 

  $("#ErrorMessage").html(strMessage); 

  $("#ErrorMessage").css("color", "#FF0000"); 

  evt.preventDefault(); 

}

6. To prevent the form from submission when validation errors are
present, the .preventDefault() method is used.

See also
The Selecting a control using an ID and displaying its value
recipe



Chapter 3. Event Handling
Using jQuery
This chapter introduces the important concepts when handling
events in ASP.NET using jQuery. The following recipes are
discussed in this chapter:

Responding to mouse events
Responding to keyboard events
Responding to form events
Using event delegation to attach events to future controls
Running an event only once
Triggering an event programmatically
Passing data with events and using event namespacing
Detaching events

Introduction
An event is an action that occurs when the user interacts with the
web page or when certain milestones are completed such as loading
a page in the browser. Moving the mouse, pressing a key, clicking on
a button or link, keying in text in a field, or submitting a form, all
correspond to common events that are raised during the life cycle of
a page. These events can either be user- or system-initiated.

An event handler is a function that is executed when a specific event
occurs. Writing an event handler for a particular event is called wiring
or binding an event. Event handlers help developers harness events
and program the desired actions.

When working with events, it is important to familiarize you with a
mechanism called event delegation. This feature enables you to
attach a single event handler to a parent instead of attaching
individual event handlers to each child element. For example,



consider an unordered list, that is, a ul element consisting of 100 list
items. Instead of attaching 100 individual event handlers to the page,
that is, one for each list item, a single event handler can be attached
to the parent, that is, to the unordered list instead. In addition to
optimizing the number of event handlers required on the page, event
delegation also helps you wire the event to child elements that do
not exist now but will be added in future.

Event delegation is made possible because of event bubbling.
Event bubbling is the process by which an event that occurs in a
child element travels to its parent, then to its parent's parent, and so
on, until it reaches the root element: the window. Let's say we have a
table element on a page. When you click on a table cell, that is,
when you click on the td element, the click event will bubble all the
way up the DOM tree, that is td -> tr -> table -> body -> html ->
window, as shown in the following figure:

Hence, the click event for td elements can be intercepted by the
parent table element, and a single handler attached to the table can
act as a representative for all the individual table cells.

Certain applications, however, may require event bubbling to be
terminated at a particular level. Hence, jQuery provides a
.stopPropagation() method to the event that causes the event to
stop bubbling up the DOM tree.



Note
Find out more about jQuery events at
https://api.jquery.com/category/events.

jQuery event binders
jQuery 1.7+ provides the .on() method to respond to events. Prior to
this method, other event binders such as .bind(), .live(), and
.delegate(), were used. However, these methods have been
deprecated, and it is recommended that you use .on() in jQuery
1.7+ for event binding. There are various ways of using this method,
which are as follows:

Attaching a single event to a handler

For example, attaching a handler to the click event of a button
control as follows:

$ ("#btnTest").on ("click",function (){...});

Attaching multiple events to a handler

For example, attaching the same handler to the mouseover and
mouseout events of an image control as follows:

$ ("#imgTest").on ("mouseover mouseout", 

function (){...});

Attaching different events to different handlers

For example, attaching different handlers to the mouseover and
mouseout events of an image control as follows:

$ ("#imgTest").on ({ 

  mouseover: function (){...}, mouseout: 

https://api.jquery.com/category/events


function (){...} 

});

Event delegation

For example, attaching an event handler to the parent table
instead of each individual table row as follows:

$("#tblTest").on("click", "tr", function()

{...});

Passing data to events

For example, passing data to an event as a JSON string as
follows:

$("btnTest").on("click",{var1: "val1", var2: 

"val2"}, function(event){...});

Now, let's move on to the recipes to take a closer look at binding.



Responding to mouse events
This recipe demonstrates how to write event handlers for common
mouse events that occur on a web page, such as mouseover and
mouseout. The constructs used in this example are summarized as
follows:

Construct Type Description

$(".class") jQuery
selector

This matches all elements with the specified
CSS class.

$(this) jQuery
object

This refers to the current jQuery object

.attr("name")

or

.attr("name",

"value")

jQuery
method

This returns a string with the value of the
required attribute of the first matched
element.

It can also be used to set the attribute to the
required value.

.appendTo() jQuery
method

This appends each matched element to the
end of the target element.

input jQuery
selector

This selects all input elements.



Construct Type Description

mouseout jQuery
event

This is fired when the mouse pointer leaves
a control. It corresponds to the JavaScript
mouseout event.

mouseover jQuery
event

This is fired when the mouse pointer enters
a control. It corresponds to the JavaScript
mouseover event.

.on() jQuery
event
binder

This attaches an event handler for one or
more events to the matched elements.

.parents() jQuery
method

This selects the ancestors of the matched
elements in the DOM tree.

.remove() jQuery
method

This removes the matched elements from
the DOM.

.removeAttr() jQuery
method

This removes the specific attribute from the
matched elements.

.text() jQuery
method

This returns the combined text content of
each of the matched elements or sets the
text content of every matched element.



Construct Type Description

:text jQuery
selector

This selects all input elements of type equal
to text.

Getting ready
To show the handling of mouse events on a page, follow these steps:

1. Let's start by creating a simple registration page for students, as
shown in the following screenshot:

2. By moving the mouse pointer over any TextBox control on the
page, the corresponding tooltip is displayed using jQuery, as
shown here:



3. When the mouse pointer moves out of the respective TextBox
control, the tooltip becomes invisible.

Note
When the ToolTip property of a control is used, ASP.NET
displays a simple tooltip by default. This recipe enhances the
default tooltip and applies custom styles to it.

4. To build this page, create an ASP.NET Web Application project
in Visual Studio using the Empty template, and name the
project Recipe1 (or any other suitable name).

5. Add the jQuery library to the project in the Scripts folder.
6. Create a new web form, and include the jQuery library in the

form.
7. Add the following markup to the form to create the registration

fields:
<table> 

  <tr><td>Student Name:</td> 

    <td><asp:TextBox ID="txtStudentName" 

runat="server" ToolTip="Name as in your 

Student Card"></asp:TextBox> 



    </td> 

  </tr> 

  <tr><td>Student ID:</td> 

    <td><asp:TextBox ID="txtStudentID" 

runat="server" ToolTip="Enter your 10 digit 

Student ID"></asp:TextBox> 

    </td> 

  </tr> 

  <tr><td>Email:</td> 

    <td><asp:TextBox ID="txtEmail" 

runat="server" ToolTip="Email address for 

receiving registration notification">

</asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"> 

      <asp:Button ID="btnRegister" 

runat="server" Text="Register" /> 

    </td> 

  </tr> 

</table>

Note that each TextBox control has a ToolTip text defined. This
is the text that will be displayed when the user moves the mouse
pointer to the respective TextBox control.

8. In the head element of the page, add a style element to the
tooltip, as shown in the following code:

<style type="text/css"> 

  tooltip{ 

    border: 1px solid; 

    font-family:'Times New Roman', Times, 

serif; 

    font-size:smaller; 

    font-weight:700; 

    background-color:crimson; 

    color:white; 

    position:absolute; 

    padding:3px; 

  } 

</style>



How to do it…
Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

  $(document).ready(function () { 

    $("input:text").on("mouseover",function(){ 

      var strTitle = $(this).attr("title"); 

      $(this).removeAttr("title"); 

      $("<div class='tooltip'>

</div>").text(strTitle).appendTo($(this).parents("

tr")); 

    }); 

    $("input:text").on("mouseout", function () { 

      var strTitle = $(".tooltip").text(); 

      $(this).attr("title", strTitle); 

      $(".tooltip").remove(); 

    }); 

  }); 

</script>

How it works…
The web page works as follows:

1. Save the application using Ctrl + S, and run it using F5. The
page gets loaded in the browser window, and the respective
tooltips can be seen next to the TextBox control by moving the
mouse pointer inside the control. By moving the mouse pointer
out of the control, the tooltip disappears.

2. This is made possible by attaching events to both the mouseover
and mouseout properties of the TextBox controls as follows:

$("input:text").on("mouseover",function(){…}); 

$("input:text").on("mouseout", function(){…});

Tip



Instead of using the .on() event binder with the mouseover
and mouseout events, a hover can be used that provides a
shortcut mechanism to wire events for the mouse pointer
that enters and leaves the element.

3. In the event handler for mouseover, we need to retrieve the
ToolTip text and display it in a div area next to the TextBox
control. At runtime, the ToolTip property of an ASP.NET control
is rendered as a title property. Thus, the title attribute of the
control is retrieved and saved in a local variable:

var strTitle = $(this).attr("title");

To prevent ASP.NET from displaying the default tooltip, remove
the title attribute from the respective control. To remove the
attribute is fine since we have already saved its value in the
strTitle variable:

$(this).removeAttr("title");

4. Now, create a div element with a tooltip CSS class. This class
contains the necessary cosmetics used to display the tooltip.
Set its text to the tooltip text, strTitle. Append this div element
to the parent table row, that is, the tr element of the TextBox
control:

$("<div class='tooltip'>

</div>").text(strTitle).appendTo($(this).paren

ts("tr"));

5. In the event handler for mouseout, we need to delete the div
element created in step 4 and restore the title attribute of the
control. Hence, firstly, retrieve the tooltip text using the CSS
class selector:

var strTitle = $(".tooltip").text();

6. Add this tooltip text to the title attribute of the TextBox control.
This is to ensure that the tooltip text for a particular TextBox



control is not lost:
$(this).attr("title", strTitle);

Now, the div element created in step 4 can be safely deleted so
that it disappears by moving out the mouse pointer. Once again,
the CSS class selector is used to access the div element during
deletion:

$(".tooltip").remove();

See also
The Responding to keyboard events recipe



Responding to keyboard events
This recipe demonstrates how to write an event handler for a
common keyboard event, keyup, which is triggered when a key is
released. The constructs used in this example are as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element using its
ID.

$(this) jQuery
object

This refers to the current jQuery
object.

.addClass() jQuery
method

This adds the specified CSS class
to each matched element.

keyup jQuery
event

This is fired when a key is
released. It corresponds to the
JavaScript keyup event.

.length JavaScript
property

This returns the length of the
string.

.on() jQuery
event
binder

This attaches an event handler for
one or more events to the matched
elements.



Construct Type Description

.prop(propertyName)

or

.prop(propertyName,

value)

jQuery
method

This returns the value of the
specified property for the first
matched element or sets the value
of the specified property for all
matched elements.

.substring() JavaScript
function

This extracts a substring of a
string.

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text content
of every matched element.

.toString() JavaScript
function

This converts an object to a string
data type.

.val() jQuery
method

This returns the value of the first
matched element or sets the value
of every matched element.

Getting ready
For creating a page that responds to keyboard events, follow these
steps:



1. We will create the following form that keeps a check on the
number of characters entered by a user in a multiline textbox
field. When characters are entered in the field, the second
textbox displays the number of the remaining characters that
can be entered, with the limit set to 100, as shown in the
following screenshot:

When the maximum number of characters, that is, 100 is
reached, the count reduces to 0, and the multiline textbox field
prevents any more characters from being entered, as shown in
the following screenshot:



2. To get started with this application, create a new ASP.NET Web
Application project in Visual Studio using the Empty template,
and name it Recipe2 (or any other suitable name).

3. Create a Scripts folder in the project and copy the jQuery library
files to this folder.

4. Add a new web form to the project and include the jQuery library
on the form.

5. Add the following markup to the web form to create the page, as
shown in the preceding screenshot:

<h2> Enter your comments below:</h2> 

<asp:TextBox ID="txtComments" runat="server" 

Columns="40" Rows="5" TextMode="MultiLine">

</asp:TextBox> 

<br/><br/> 

<asp:Label ID="lblCount" runat="server" 

Text="Characters remaining: "></asp:Label>

<asp:TextBox ID="txtCount" runat="server" 

MaxLength="3" Width="50px"></asp:TextBox> 

<br/><br/> 

<asp:Label ID="lblError" runat="server">

</asp:Label>

Note that the TextMode property of the txtComments field is set to
MultiLine. The txtCount textbox that is used to display the count



of the remaining characters has MaxLength set to 3 since it will be
used to display numbers from 0 to 100 only. There is a lblError
label control at the end of the form that is used to display an
error message once the character count exceeds the maximum
allowable limit.

6. Add the following CSS style to the page:
<style type="text/css"> 

  .red{ 

    color:red; 

  } 

</style>

This style will be applied to the error message.

How to do it…
Include the following jQuery code in a <script> block on the page:

<script type="text/javascript"> 

  $(document).ready(function () { 

    $("#<%=txtCount.ClientID%>").val("100"); 

    $("#

<%=txtCount.ClientID%>").prop("readonly",true); 

    $("#<%=lblError.ClientID%>").addClass("red"); 

    $("#<%=txtComments.ClientID%>").on("keyup", 

function ()  

    { 

      var maxChars = 100; 

      var count = $(this).val().length; 

      var remChars = maxChars - count; 

      if (remChars >= 0) { 

        $("#

<%=txtCount.ClientID%>").val(remChars.toString()); 

      }else{ 

        

$(this).val($(this).val().substring(0,maxChars)); 

        $("#<%=txtCount.ClientID%>").val("0"); 

        $("#<%=lblError.ClientID%>").text("You 

have reached the maximum characters allowed"); 

      } 

    }); 



  }); 

</script>

How it works…
The page works as follows:

1. Save the page using Ctrl + S, and run it using F5. When the
document is ready, the number of remaining characters in the
textbox below the comments field is set to 100 characters in the
following statement:

$("#<%=txtCount.ClientID%>").val("100");

This textbox is also set to readonly so that the user cannot make
changes to its contents:

$("#

<%=txtCount.ClientID%>").prop("readonly",true)

;

2. A CSS class is added to the error label so that it displays the
error message in red:

$("#<%=lblError.ClientID%>").addClass("red");

3. An event handler is wired to the keyup event of the multiline
textbox using the .on() method as follows:

$("#<%=txtComments.ClientID%>").on("keyup", 

function () {...});

Tip
The keyup event is used instead of the keydown and keypress
events so that the character count calculation can be done
after the character has been added to the textbox. When
using keydown or keypress, the jQuery code is executed



before the character has been added to the textbox, thus
giving an incorrect character count. Try changing keyup to
keydown or keypress by yourself.

4. In the preceding event handler, firstly, a variable is declared to
store the maximum allowable characters in the multiline textbox
and its value is set to 100 characters:

var maxChars = 100;

5. The number of characters in the multiline textbox at any point of
time is saved in another variable:

var count = $(this).val().length;

6. The difference between the maximum and actual number of
characters is calculated and saved in a third variable:

var remChars = maxChars - count;

7. If the difference is positive or zero, the number of available
characters, that is, the difference calculated earlier, is displayed
in the second textbox below the comments field:

if (remChars >= 0) { 

  $("#

<%=txtCount.ClientID%>").val(remChars.toString

()); 

}

Otherwise, only the first 100 characters are extracted from the
comments field using the substring function and displayed in
the field. The count of characters is set to 0 in the second
textbox, and an error message is displayed using the label
control at the end of the page:

else{ 

  

$(this).val($(this).val().substring(0,maxChars

)); 

  $("#<%=txtCount.ClientID%>").val("0"); 



  $("#<%=lblError.ClientID%>").text("You have 

reached the maximum characters allowed"); 

}

See also
The Responding to form events recipe



Responding to form events
This recipe demonstrates how to respond to events such as focus
and blur that are triggered on controls on the web form. The
constructs used in this example are as follows:

Construct Type Description

$(this) jQuery
object

This refers to the current jQuery
object.

.addClass() jQuery
method

This adds the specified CSS class to
each matched element.

[attribute!=

"value"]

jQuery
selector

This selects elements with the
specified attribute that is not equal to
the value string.

blur jQuery
event

This is fired when an element loses
focus. It corresponds to the
JavaScript blur event.

.each() jQuery
method

This iterates over the matched
elements and executes a function for
each element.



Construct Type Description

focus jQuery
event

This is fired when an element gets
focus. It corresponds to the
JavaScript focus event.

:input jQuery
selector

This matches the input, button,
select, and textarea elements.

.on() jQuery
event
binder

This attaches an event handler for
one or more events to the matched
elements.

.prop(propertyName)

or
.prop(propertyName,

value)

jQuery
method

This returns the value of the specified
property for the first matched element
or sets the value of the specified
property for all matched elements.

.removeClass() jQuery
method

This removes the specified CSS
class from each matched element.

.val() jQuery
method

This returns the value of the first
matched element or sets the value of
every matched element.

Getting ready



Follow these steps to create a form for event handling:

1. We will build a very basic account registration form, as shown in
the following screenshot:

The textbox fields on the form display default text. When the
cursor is focused on a particular TextBox control, the default text
disappears and the control is highlighted in blue, as shown in
the preceding screenshot. Similarly, highlighting is also applied
to the DropDownList control when it is active.

When the cursor moves out of the control, and if the control is
empty, that is, if no data is entered into the control, it is
highlighted in red to indicate a validation error, as shown in the
following screenshot:



2. To get started, first create an ASP.NET Web Application project
in Visual Studio using the Empty template and name it Recipe3
(or any other suitable name).

3. Create a Scripts folder in the project and copy the jQuery library
files to this folder.

4. Add a new web form to the project and include the jQuery library
in the page.

5. Add the following markup to the web form:
<table> 

  <tr> 

    <td colspan="2"><asp:Label ID="lblName" 

runat="server" Text="Name"></asp:Label> 

    </td> 

  </tr> 

  <tr> 

    <td><asp:TextBox ID="txtFirst" 

runat="server" ToolTip="First"></asp:TextBox> 

    </td> 

    <td><asp:TextBox ID="txtLast" 

runat="server" ToolTip="Last"></asp:TextBox> 



    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:Label ID="lblEmail" 

runat="server" Text="Email"></asp:Label> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:TextBox ID="txtEmail" 

runat="server" ToolTip="@email.com">

</asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:Label 

ID="lblPassword" runat="server" 

Text="Password"></asp:Label> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:TextBox 

ID="txtPassword" runat="server" 

TextMode="Password"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:Label 

ID="lblConfirmPassword" runat="server" 

Text="Confirm Password"></asp:Label> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:TextBox 

ID="txtConfirmPassword" runat="server" 

TextMode="Password"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:Label ID="lblGender" 

runat="server" Text="Gender"></asp:Label> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"> 

      <asp:DropDownList ID="ddlGender" 

runat="server"> 

        <asp:ListItem Text="--Please select--" 

Value=""></asp:ListItem> 



        <asp:ListItem Text="Male" 

Value="Male"></asp:ListItem> 

        <asp:ListItem Text="Female" 

Value="Female"></asp:ListItem> 

      </asp:DropDownList> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"> 

      <asp:Button ID="btnSubmit" 

runat="server" Text="Submit" /> 

      <asp:Button ID="btnReset" runat="server" 

Text="Reset" /> 

    </td> 

  </tr> 

</table>

6. Include the following styles in the head element of the page:
<style type="text/css"> 

  .active{ 

    border-color:blue; 

  } 

  .invalid{ 

    border-color:red; 

  } 

  .backgroundtext{ 

    color:grey; 

  } 

</style>

The active style is applied to the current control on the page,
that is, the control that has the cursor. The invalid style is
applied to invalid controls: controls in which no data has been
entered. The backgroundtext style is applied to the default text
displayed in the TextBox controls.

How to do it…
Include the following jQuery code in a <script> block on the page:

<script type="text/javascript"> 

  $(document).ready(function () { 



    $(":input[type!=submit]").each(function () { 

      if ($(this).val() == "") { 

        $(this).addClass("backgroundtext"); 

        $(this).val($(this).prop("title")); 

      } 

    }); 

    $(":input[type!=submit]").on({ 

      focus: function () { 

        if ($(this).val() == 

$(this).prop("title")) { 

          $(this).removeClass("backgroundtext"); 

          $(this).removeClass("invalid"); 

          $(this).val(""); 

        } 

        $(this).addClass("active"); 

      }, 

      blur: function () { 

        $(this).removeClass("active"); 

        if ($(this).val() == "") { 

          $(this).addClass("backgroundtext"); 

          $(this).addClass("invalid"); 

          $(this).val($(this).prop("title")); 

        }else { 

          $(this).removeClass("invalid"); 

        } 

      } 

   }); 

  }); 

</script>

How it works…
The page works as follows:

1. When the form loads at runtime, all controls except the button
controls are initialized by executing the .each() method:

$(":input[type!=submit]").each(function () 

{...});

The attribute filter ensures that the input elements of the type =
submit i.e. the button controls are excluded from the
initialization.



2. For each control on the form filtered using the preceding
selector, if the control is empty, then the default text is displayed
by setting the ToolTip text to its text value. The CSS class of the
control is also set to backgroundtext:

if ($(this).val() == "") { 

  $(this).addClass("backgroundtext"); 

  $(this).val($(this).prop("title")); 

}

Note
At runtime, the ToolTip is rendered as the title attribute.
Hence, $(this).prop("title") gives the ToolTip text.

3. For all the controls on the form, excluding the button controls,
the .on() method is used to bind event handlers to the focus
and blur events, as follows:

$(":input[type!=submit]").on({focus: function 

() {...}, 

  blur: function () {...}});

Here, the binder is used to attach different event handlers to the
focus and blur events, respectively.

4. Now, let's discuss the individual event handlers, starting with the
one for the focus event. When any control receives focus, we
want the border color to change to blue, indicating that this is
the current or active control. Also, if the control is empty, that is,
if its text is set to the default value, then the default text should
be cleared and any other styles should be removed. This can be
achieved as follows:

focus: function () { 

  $(this).addClass("active"); 

  if ($(this).val() == $(this).prop("title")) 

{ 



    $(this).val(""); 

    $(this).removeClass("backgroundtext"); 

    $(this).removeClass("invalid"); 

  } 

}

In the event handler for blur, firstly, since the control is no
longer the active control, the corresponding style should be
removed. Secondly, we need to check whether data has been
entered into the control or not. If the field is empty, its border
color is changed to red. Also, the default text is displayed with
the corresponding styling:

blur: function () { 

  $(this).removeClass("active"); 

  if ($(this).val() == "") { 

    $(this).addClass("backgroundtext"); 

    $(this).addClass("invalid"); 

    $(this).val($(this).prop("title")); 

  }else { 

    $(this).removeClass("invalid"); 

  } 

}

See also
The Detaching events recipe



Using event delegation to
attach events to future controls
This recipe demonstrates event delegation and event bubbling. By
adding elements at runtime, we will also demonstrate how delegation
helps you attach events to future controls. The constructs used in
this example are as follows:

Construct Type Description

$("html_tag") jQuery
selector

This selects all elements with the specified
HTML tag.

.addClass() jQuery
method

This adds the specified CSS class to each
matched element.

.append() jQuery
method

This attaches elements at the end of each
matched element.

[attribute=

"value"]

jQuery
selector

This selects an element with the specified
attribute equal to the value string.

click jQuery
event

This is fired when you click on an element.
It corresponds to the JavaScript click
event.



Construct Type Description

dblclick jQuery
event

This is fired when you double-click on an
element is. It corresponds to the
JavaScript dblclick event.

.on() jQuery
event
binder

This attaches an event handler for one or
more events to the matched elements.

.removeClass() jQuery
method

This removes the specified CSS class from
each matched element.

Getting ready
Follow the steps listed below to create a form to demonstrate event
bubbling and delegation:

1. We will create a simple web page that displays data rows from
an XML file. A new data row is added at runtime so that we can
see the impact with and without delegation:



When you double-click on a row, it is highlighted, as shown in
the following screenshot. With a single mouse click on the same
row, the highlight can be removed:

2. To create the preceding page, launch a new ASP.NET Web
Application project in Visual Studio using the Empty template
and name it Recipe4 (or any other suitable name).

3. Create a Scripts folder in the project and add the jQuery library
files to this folder.

4. Add the App_Data folder to the project by right-clicking on the
project in Solution Explorer tab and navigating to Add | Add
ASP.NET Folder | App_Data.

5. Right-click on the App_Data folder, and go to Add | XML File. In
the dialog box that is displayed, name the file StudentData.xml,
and click on the OK button.



6. Now, double-click on the previous XML file in Solution Explorer
tab to open the file. Enter some sample student records with the
following structure:

<StudentData> 

  <Student> 

    <ID>...</ID> 

    <Name>...</Name> 

    <Score>...</Score> 

    <Module>...</Module> 

  </Student> 

  ... 

</StudentData>

7. Add a new web form to the project and include the jQuery library
in the page.

8. Navigate to Toolbox | Data, and add the XMLDataSource and
Repeater controls to the form.

9. In the Design view of the web form, click on the small arrow
icon in the top-right corner of the XMLDataSource option to
open its configuration menu, as shown here:

10. From the preceding menu, select Configure Data Source, go to
the path of the StudentData.xml file, and set its XPath to
/StudentData/Student, as shown in the following screenshot.
Click on the OK button:



11. Now that the XMLDataSource option has been configured in
the Design view, click on the small arrow in the top-right corner
of the Repeater control to open the Repeater Tasks menu.
Select the XMLDataSource option, that was configured earlier,
from the Choose Data Source dropdown:

12. Add the following markup to the Repeater control so that it
displays the fields of the student record:

<asp:Repeater ID="Repeater1" runat="server" 

DataSourceID="XmlDataSource1"> 

  <HeaderTemplate> 

    <table id="StudentData"> 

    <thead> 

      <tr> 

        <th>ID</th> 



        <th>Student Name</th> 

        <th>Module</th> 

        <th>Score</th> 

      </tr> 

    </thead> 

  </HeaderTemplate> 

  <ItemTemplate> 

    <tr> 

      <td><%# XPath("ID") %></td> 

      <td><%# XPath("Name") %></td> 

      <td><%# XPath("Module") %></td> 

      <td><%# XPath("Score") %></td> 

    </tr> 

  </ItemTemplate> 

  <FooterTemplate> 

  </table> 

  </FooterTemplate> 

</asp:Repeater>

13. Include the following style in the head element on the page. This
style will be applied to rows that require to be highlighted:

<style type="text/css"> 

  .highlight{ 

    background-color:greenyellow; 

  } 

</style>

How to do it…
Include the following jQuery code in a <script> block on the web
page:

<script type="text/javascript"> 

  $(document).ready(function () { 

    $("table[id=StudentData] 

").on("dblclick","tr", function () { 

      $(this).addClass("highlight"); 

    }); 

    $("table[id=StudentData] ").on("click", "tr", 

function () { 

      $(this).removeClass("highlight"); 

    }); 

    $("table[id=StudentData]").append("<tr>



<td>HT2015051</td><td>Abraham A.</td><td>ISR</td>

<td>70</td></tr>"); 

  }); 

</script>

How it works…
The page works as follows:

1. Save the page using Ctrl + S and run it using F5. The page
loads up, and the Repeater control displays the student data
from the XML file.

2. Instead of attaching the double-click event to the table row, the
.on() event binder is used to attach the event handler to the
parent table instead. The tr element is specified as the selector
to filter the descendant elements that are allowed to trigger the
event. So, when you double-click on a table row, the event
bubbles up to the parent table and the respective dblclick event
handler is executed:

$("table[id=StudentData] 

").on("dblclick","tr", function () { 

  $(this).addClass("highlight"); 

});

3. Similarly, the click event handler is attached to the parent table
instead of the tr element. By clicking on any row, the
highlighting can be removed as follows:

$("table[id=StudentData] ").on("click", "tr", 

function () { 

  $(this).removeClass("highlight"); 

});

4. At runtime, a new table row can be appended using the
.append() function as follows:

$("table[id=StudentData]").append("<tr>

<td>HT2015051</td><td>Abraham A.</td>

<td>ISR</td><td>70</td></tr>");



This row exhibits the same behavior as any other row; that is,
you can double-click on it to add a background color and click
on it once to remove the background color.

5. Now, to see the behavior of a dynamically added row in the
absence of event delegation, modify the event bindings to attach
the events to the table row instead of the parent table, as
follows:

$("table[id=StudentData]  tr").on("dblclick", 

function () { 

  $(this).addClass("highlight"); 

}); 

$("table[id=StudentData] tr").on("click", 

function () { 

  $(this).removeClass("highlight"); 

});

Now, when a new row is added at runtime, it does not display
the required behavior on click and dbclick events.

See also
The Responding to mouse events recipe



Running an event only once
Certain applications require triggering of event handlers just once. If
an event handler is wired using the .on() method, it is triggered
every time the event occurs, which may be undesirable in such
situations. This recipe demonstrates how to attach an event handler
for one-time invocation. The constructs used in this example are
summarized as follows:

Construct Type Description

$(".class") jQuery
selector

This matches all elements with the specified
CSS class.

$("html_tag") jQuery
selector

This selects all elements with the specified
HTML tag.

[attribute=

"value"]

jQuery
selector

This selects an element with the specified
attribute equal to the value string.

click jQuery
event

This is fired when you click on an element.
It corresponds to the JavaScript click
event.

.hide() jQuery
method

This hides the matched elements.



Construct Type Description

.one() jQuery
event
binder

This attaches an event handler for one or
more events to the matched elements. The
handler is executed at most once.

.show() jQuery
method

This displays the matched elements.

Getting ready
To create a form that executes an event handler just once, follow
these steps:

1. We will build the web form, as shown in the following
screenshot, to display the Employee records from the Northwind
database. The page has a See More... link to display additional
details about the employee:



When you click on the link, the additional details will be
displayed on the page, as shown in the following screenshot:



The See More... link is designed to work only once. Subsequent
clicking of the link will not trigger any event handlers.

Tip
Northwind is an open source database that can be
downloaded from https://northwinddatabase.codeplex.com.
Read more about How to install sample databases from the
MSDN page at https://msdn.microsoft.com/en-
us/library/8b6y4c7s.aspx.

2. To build the preceding page, we need to create an ASP.NET
Web Application project in Visual Studio and name it Recipe5
(or any other suitable name).

3. Add a Scripts folder to the project and add the jQuery library to
the folder.

https://northwinddatabase.codeplex.com/
https://msdn.microsoft.com/en-us/library/8b6y4c7s.aspx


4. Add a new web form to the project. Include the jQuery library on
the form.

5. Open the form in the Design mode. Go to Toolbox | Data, and
add a SqlDataSource control to the form.

6. In the Design mode, click on the small arrow icon that appears
in the top-right corner of the SqlDataSource control on mouseover.
Click on Configure Data Source, as shown here:

7. Follow the wizard, and add a new database connection. In the
dialog box, enter your server name, select the Northwind
catalog, and click on OK:



Note
Note that we are using Windows Authentication for all
database driven examples in this book. Hence in the MS
SQL Server, it is important to give permission to the windows
account to access the Northwind database.



8. In the Configure the Select Statement dialog box, as shown in
the following screenshot, choose Specify columns from a
table or view from the radio button list, and select the Employees
table from the drop-down menu. Check the columns required to
be displayed on the page, such as EmployeeID, LastName,
FirstName, Country, HomePhone, and Notes. Click on the Next
button:

Test the query, and complete the wizard by clicking on the
Finish button.

9. Now, in the Design mode, drag and drop a FormView control by
navigating to Toolbox | Data. Click on the small arrow icon that
appears in the top-right corner of the FormView control on



mouseover, and click on Choose Data Source. Select
SqlDataSource1 from the drop-down menu, as shown here:

10. Add the following markup to the FormView control in Source
mode:

<asp:FormView ID="FormView1" runat="server" 

AllowPaging="True" DataKeyNames="EmployeeID" 

DataSourceID="SqlDataSource1"> 

  <ItemTemplate> 

    <table id="EmployeeData"> 

      <tr> 

        <td>EmployeeID:</td> 

        <td><asp:Label ID="EmployeeIDLabel" 

runat="server" Text='<%# Eval("EmployeeID") 

%>' /></td> 

      </tr> 

      <tr> 

        <td>Last Name:</td> 

        <td><asp:Label ID="LastNameLabel" 

runat="server" Text='<%# Bind("LastName") %>' 

/></td> 

      </tr> 

      <tr> 

        <td>First Name:</td> 

        <td><asp:Label ID="FirstNameLabel" 

runat="server" Text='<%# Bind("FirstName") %>' 

/></td> 

      </tr> 

      <tr> 

        <td>Country:</td> 

        <td><asp:Label ID="CountryLabel" 

runat="server" Text='<%# Bind("Country") %>' 

/></td> 

      </tr> 

      <tr> 

        <td>Home Phone:</td> 



        <td><asp:Label ID="HomePhoneLabel" 

runat="server" Text='<%# Bind("HomePhone") %>' 

/></td></tr> 

      <tr> 

        <td colspan="2"> 

          <asp:HyperLink ID="lnkMore" 

runat="server" CssClass="morelink">See More...

</asp:HyperLink> 

        </td> 

      </tr> 

    </table> 

    <asp:Label ID="lblMoreData" 

CssClass="moredata" runat="server" 

Text='<%#Bind("Notes") %>'></asp:Label> 

    <br/> 

  </ItemTemplate> 

</asp:FormView>

11. Add the following styles to the head element of the page:
<style type="text/css"> 

  .moredata{ 

    color:grey; 

  } 

  .morelink{ 

    cursor:pointer; 

    color:maroon; 

    text-decoration:underline; 

  } 

</style>

The moredata CSS class is applied to the additional details of the
employee displayed on the page. The morelink CSS class is
used to style the See More... link.

How to do it…
Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

  $(document).ready(function () { 

    $(".moredata").hide(); 

    $("table[id=EmployeeData]").one("click", 

"a.morelink", function () { 



      $(".moredata").show(); 

    }); 

  }); 

</script>

How it works…
The page works as follows:

1. Save the application and run it using F5. The page loads the
first record from the Employees table and displays it in the
FormView control. Navigation through the records is possible
using the page numbers at the bottom of the page.

2. Each page displays the basic employee details, such as the
name, country, and home phone number. The notes related to
the employee are hidden using the following code:

$(".moredata").hide();

The preceding selector uses the CSS class assigned to the
lblMoreData label control in the FormView item template.

3. A See More... hyperlink provided in the FormView option
enables you to view the notes related to the employee record.
This is done using the .one() event binder attached to the
parent table:

$("table[id=EmployeeData]").one("click", 

"a.morelink", function () { 

  $(".moredata").show(); 

});

Using .one() instead of .on() enables you to call the event
handler at most once. Once the event handler is executed, it is
detached from the element so that it cannot be reinvoked.

Note that the event handler is attached to the parent element
instead of attaching it to the hyperlink directly. The anchor



element with the morelink CSS class is passed as the child
selector that can raise the event.

Once the click event is raised, the label control containing the
notes is displayed using the .show() method.

See also
The Passing data with events and using event namespacing recipe



Triggering an event
programmatically
This recipe demonstrates the use of the .trigger() method to
invoke events programmatically. The constructs used in this example
are as follows:

Construct Type Description

$(".class") jQuery
selector

This matches all elements with the
specified CSS class.

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

$(this) jQuery
object

This refers to the current jQuery object.

.attr("name")

or

.attr("name",

"value")

jQuery
method

This returns a string with the required
attribute value of the first matched
element. It can also be used to set the
attribute to the required value.

[attribute=

"value"]

jQuery
selector

This selects an element with the
specified attribute equal to the value
string.



Construct Type Description

click jQuery
event

This is fired when you click on an
element. It corresponds to the JavaScript
click event.

dblclick jQuery
event

This is fired when you double-click on an
element. It corresponds to the JavaScript
double-click event.

eval() JavaScript
function

This executes the JavaScript expression.

.find() jQuery
method

This finds all elements matching the filter.

.on() jQuery
event
binder

This attaches an event handler for one or
more events to the matched elements.

.trigger() jQuery
method

This executes handlers and behaviors
attached to the matched elements.

Getting ready
To create a web page that triggers events programmatically, follow
these steps:



1. We will build a web page, as shown in the following screenshot.
The page displays the list of products from the Northwind
database in a GridView control. The GridView control has an Edit
column containing a LinkButton control to edit any particular row
of data:

Generally, when you click on the Edit link in any particular row,
the record goes into the edit mode, and the Update and Cancel
links are shown. In our case, we will use jQuery to trigger the
clicking of the Edit link when the user double-clicks on a
particular row. So, programmatically, the edit mode of the
specific row will be activated, as shown in the following
screenshot:



2. To build the preceding page, create an ASP.NET Web
Application project in Visual Studio and name it Recipe6 (or any
other suitable name).

3. Add a Scripts folder to the project, and add the jQuery library to
the folder.

4. Add a new web form to the project. Include the jQuery library on
the web form.

5. Now, right-click on the project in Solution Explorer, and go to
Add | New Item. From the dialog box, select Data in the left-
hand side panel and ADO.NET Entity Data Model in the middle
panel. Enter the name ProductModel in the text field shown in the
following screenshot, and click on the Add button:



6. In the Entity Data Model Wizard, select EF Designer from
database, and click on the Next button:



7. Create a connection to the Northwind database running on MS
SQL Server, and save the connection string in web.config as
NorthwindEntities. Click on the Next button:



8. On the next screen, which displays the database objects, check
the Products table by navigating to Tables | dbo | Products,
and click on the Finish button:



9. Now, add a GridView control to the web form by navigating to
Toolbox | Data.

10. In the code-behind file (Default.aspx.vb or Default.aspx.cs),
add the following method to retrieve records from the Products
table.

For VB, the code is as follows:

Public Function GridView1_GetData() As 

IQueryable 

  Dim db As NorthwindEntities = New 

NorthwindEntities() 

  Dim queryResults = From prod In db.Products 

    Order By prod.ProductID 

    Select prod.ProductID, prod.ProductName, 

prod.UnitPrice, prod.UnitsInStock 



  Return queryResults 

End Function

For C#, the code is as follows:

public IQueryable GridView1_GetData() 

{ 

  NorthwindEntities db = new 

NorthwindEntities(); 

  var query = from prod in db.Products 

    orderby prod.ProductID 

    select new 

    ProductID = prod.ProductID, 

    ProductName = prod.ProductName, 

    UnitPrice = prod.UnitPrice, 

    UnitsInStock = prod.UnitsInStock 

  }; 

  return query; 

}

11. Set SelectMethod of GridView to the preceding method in the
GridView markup as follows:

SelectMethod="GridView1_GetData"

12. Define a CSS style for the Edit link in the GridView in the head
element of the page:

<style type="text/css"> 

  .edit{ 

    color:blue; 

    cursor:pointer; 

  } 

</style>

13. The complete markup of the page (excluding the styles applied
to GridView) is as follows:

<asp:GridView ID="GridView1" runat="server" 

AutoGenerateColumns="False" 

SelectMethod="GridView1_GetData"> 

  <Columns> 

  <asp:BoundField DataField="ProductID" 

ReadOnly="true"/> 

  <asp:BoundField DataField="ProductName" 



ReadOnly="true" HeaderText="Product Name"/> 

    <asp:TemplateField HeaderText="Unit 

Price"> 

      <ItemTemplate> 

        <asp:Label ID="lblUnitPrice" 

runat="server" Text='<%# Bind("UnitPrice")%>'>

</asp:Label> 

      </ItemTemplate> 

      <EditItemTemplate> 

        <asp:TextBox ID="txtUnitPrice" 

runat="server"   Text='<%# 

Bind("UnitPrice")%>'></asp:TextBox> 

      </EditItemTemplate> 

    </asp:TemplateField> 

    <asp:TemplateField HeaderText="Units In 

Stock"> 

      <ItemTemplate> 

        <asp:Label ID="lblUnitsInStock" 

runat="server" Text='<%# 

Bind("UnitsInStock")%>'></asp:Label> 

      </ItemTemplate> 

      <EditItemTemplate> 

        <asp:TextBox ID="txtUnitsInStock" 

runat="server" Text='<%# 

Bind("UnitsInStock")%>'></asp:TextBox> 

      </EditItemTemplate> 

    </asp:TemplateField> 

    <asp:TemplateField HeaderText="Edit"> 

      <ItemTemplate> 

        <asp:LinkButton ID="btnEdit" 

CssClass="edit" CommandName="Edit"   

runat="server">Edit</asp:LinkButton> 

      </ItemTemplate> 

      <EditItemTemplate> 

        <asp:LinkButton ID="btnUpdate" 

CommandName="Update" 

runat="server">Update</asp:LinkButton> 

        <asp:LinkButton ID="btnCancel" 

CommandName="Cancel" 

runat="server">Cancel</asp:LinkButton> 

      </EditItemTemplate> 

    </asp:TemplateField> 

  </Columns> 

</asp:GridView>

How to do it…



Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

  $(document).ready(function () { 

    $("table[id=GridView1]").on("dblclick", "tr", 

function () { 

      $(this).find(".edit").trigger("click"); 

    }); 

    $(".edit").click(function () { 

      eval($(this).attr('href')); 

    }); 

  }); 

</script>

How it works…
The page works as follows:

1. When you run the page, the product list is displayed in the
GridView control.

2. Now, double-click on any row. You will notice that this will
simulate clicking on the Edit link in that specific row. This is
possible by attaching an event handler to the dblclick event of
the row element as follows:

$("table[id=GridView1]").on("dblclick", "tr", 

function () {...});

3. The event handler uses the edit CSS class to select the Edit
link in that row, and the .trigger() method is used to call the
click event on this link, as follows:

$(this).find(".edit").trigger("click");

4. Finally, an event handler is attached to the click event of the Edit
link:

$(".edit").click(function () {...});

This event handler uses the JavaScript eval() function to call
the href attribute attached to the Edit link:



eval($(this).attr('href'));

See also
The Using event delegation to attach events to future controls recipe



Passing data with events and
using event namespacing
In this recipe, we will demonstrate how to pass event data with the
.trigger() method. The event data will be defined in the JavaScript
Object Notation (JSON) format, which is simply a collection of
name/value pairs. We will also see how to use namespacing on the
same event type to execute different handlers. The constructs used
in this example are as follows:

Construct Type Description

$(this) jQuery
object

This refers to the current jQuery object.

:checked jQuery
selector

This selects all checked checkboxes and
radio buttons.

click jQuery
event

This is fired when you click on an element. It
corresponds to the JavaScript click event.

.find() jQuery
method

This finds all elements matching the filter.

.on() jQuery
event
binder

This attaches an event handler for one or
more events to the matched elements.



Construct Type Description

.trigger() jQuery
method

This executes handlers and behaviors
attached to the matched elements.

.val() jQuery
method

This returns the value of the first matched
element or sets the value of every matched
element.

Getting ready
To pass data with events and to use event namespacing, follow
these steps:

1. We will create a simple web page with two RadioButtonList
controls and one Button control as follows:

When you click on any radio button in the first RadioButtonList
control, the click event of the Button control is called



programmatically and information on the selected radio button is
passed to the event handler. The event data is displayed in a
JavaScript alert message, as shown in the following screenshot:

When you click on any radio button from the second
RadioButtonList control, once again the click event handler of
the Button control is called programmatically and event data is
passed. However, this time a different handler is executed and
the event data is displayed in a JavaScript confirm box, as
follows:



2. To get started, create an ASP.NET Web Application project in
Visual Studio and name it Recipe7 (or any other suitable name).

3. Add a Scripts folder to the project, and add the jQuery library to
the folder.

4. Add a new web form to the project. Include the jQuery library on
the form.

5. Add the following markup to the page:
<table> 

  <tr> 

    <td><fieldset> 

      <asp:RadioButtonList 

ID="RadioButtonList1" runat="server" 

Width="120px"> 

        <asp:ListItem Text="Type 1" Value="1">

</asp:ListItem> 

        <asp:ListItem Text="Type 2" Value="2">

</asp:ListItem> 

      </asp:RadioButtonList> 

    </fieldset></td> 

    <td><fieldset> 

      <asp:RadioButtonList 

ID="RadioButtonList2" runat="server" 

Width="120px"> 

        <asp:ListItem Text="Type 3" Value="3">

</asp:ListItem> 

        <asp:ListItem Text="Type 4" Value="4">

</asp:ListItem> 

      </asp:RadioButtonList> 

    </fieldset></td> 

  </tr> 

</table><br /> 

<asp:Button ID="btnSubmit" runat="server" 

Text="Submit" />

How to do it…
Include the following jQuery code in a <script> block on the page:

<script type="text/javascript"> 

  $(document).ready(function () { 

    $("#

<%=RadioButtonList1.ClientID%>").on("click", 



function () { 

      var strValContent = 

$(this).find(":checked").val(); 

      var data = { txtContent: "Group 1", 

valContent: strValContent }; 

      $("#

<%=btnSubmit.ClientID%>").trigger("click.radioclic

k1", data); 

    }); 

    $("#

<%=RadioButtonList2.ClientID%>").on("click", 

function () { 

      var strValContent = 

$(this).find(":checked").val(); 

      var data = { txtContent: "Group 2",  

valContent: strValContent }; 

      $("#

<%=btnSubmit.ClientID%>").trigger("click.radioclic

k2", data); 

    }); 

    $("#

<%=btnSubmit.ClientID%>").on("click.radioclick1", 

function (evt,data) { 

    if (data != null){ 

      var strMessage = "You have selected the 

following: \r\n"+ 

        "Event Group: " + data.txtContent + "\r\n"   

+ 

        "Type: " + data.valContent ; 

      alert(strMessage); 

    } 

  }); 

  $("#

<%=btnSubmit.ClientID%>").on("click.radioclick2", 

function (evt, data) { 

    if (data != null){ 

      var strMessage = "You have selected the 

following: \r\n" + 

        "Event Group: " + data.txtContent + "\r\n" 

+ 

        "Type: " + data.valContent; 

      window.confirm(strMessage); 

    } 

  }); 

}); 

</script>



How it works…
1. When the page loads and when you click on any radio button in

the first RadioButtonList control, the event handler
corresponding to its click event is executed:

$("#

<%=RadioButtonList1.ClientID%>").on("click", 

function () {...});

2. The preceding event handler first reads the selected value of the
radio button:

var strValContent = 

$(this).find(":checked").val();

It then forms a JSON string to pass the preceding value as the
event data:

var data = { txtContent: "Group 1", 

valContent: strValContent };

Finally, it triggers the click event of the Button control with the
required click.radioclick1 namespace and passes the
required event data:

$("#

<%=btnSubmit.ClientID%>").trigger("click.radio

click1", data);

3. When the click event is invoked programmatically, its
corresponding event handler with the click.radioclick1
namespace is executed:

$("#

<%=btnSubmit.ClientID%>").on("click.radioclick

1", function (evt,data) {...});

This handler reads the event data. If the data is not null, it is
displayed in an alert message as follows:



if (data != null){ 

  var strMessage = "You have selected the 

following: \r\n"+ 

    "Event Group: " + data.txtContent + "\r\n" 

+ 

    "Type: " + data.valContent ; 

  alert(strMessage); 

}

4. Similarly, when you click on a radio button in the second
RadioButtonList control, the event handler corresponding to its
click event is executed:

$("#

<%=RadioButtonList2.ClientID%>").on("click", 

function (  ) {...});

5. The preceding event handler first reads the selected value of the
radio button:

var strValContent = 

$(this).find(":checked").val();

It then forms a JSON string to be passed as the event data:

var data = { txtContent: "Group 2",  

valContent: strValContent };

Finally, it triggers the click event of the Button control with the
required click.radioclick2 namespace and passes the
required event data:

$("#

<%=btnSubmit.ClientID%>").trigger("click.radio

click2", data);

6. When the click button is invoked programmatically, this time,
the event handler with the click.radioclick2 namespace is
executed:

$("#

<%=btnSubmit.ClientID%>").on("click.radioclick



2", function (evt,data) {...});

This handler reads the event data. If the data is not null, it
displays the information in a confirm message this time as
follows:

if (data != null){ 

  var strMessage = "You have selected the 

following: \r\n" + 

    "Event Group: " + data.txtContent + "\r\n" 

+ 

    "Type: " + data.valContent; 

  window.confirm(strMessage); 

}

See also
The Triggering an event programmatically recipe



Detaching events
This recipe demonstrates the use of the .off() method to detach
event handlers from page elements. The constructs used in this
example are as follows:

Construct Type Description

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

$(this) jQuery
object

This refers to the current jQuery object.

.addClass() jQuery
method

This adds the specified CSS class to each
matched element.

blur jQuery
event

This is fired when an element loses focus.
It corresponds to the JavaScript blur
event.

:checked jQuery
selector

This selects all checked checkboxes and
radio buttons.

click jQuery
event

This is fired when you click on an
element. It corresponds to the JavaScript
click event.



Construct Type Description

focus jQuery
event

This is fired when an element receives
focus. It corresponds to the JavaScript
focus event.

:input jQuery
selector

This matches the input, button, select,
and textarea elements.

.is() jQuery
method

This returns a Boolean value if the
matched element satisfies a given
condition.

.off() jQuery
method

This removes event handlers from the
matched elements.

.on() jQuery
event
binder

This attaches an event handler for one or
more events to the matched elements.

.removeClass() jQuery
method

This removes the specified CSS class
from each matched element.

Getting ready
To create a form for demonstrating detaching of events, follow these
steps:



1. Create the following sample page consisting of a few TextBox
controls. There is a CheckBox control on the top of the page.
When the CheckBox control is checked, the current control with
focus is highlighted with a blue border, as shown in the following
screenshot:

When the CheckBox control is unchecked, the active control is
not highlighted any more with the blue border as it was in the
previous case:



2. To build the preceding page, create an ASP.NET Web
Application project in Visual Studio and name it Recipe8 (or any
other suitable name).

3. Add a Scripts folder to the project, and add the jQuery library to
the folder.

4. Add a new web form to the project. Include the jQuery library on
the form.

5. Add the following markup to the page:
<table> 

  <tr> 

    <td colspan="2"><asp:CheckBox 

ID="chkHighlight" runat="server" 

Text="Highlight TextBoxes" /> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:Label ID="lblName" 

runat="server" Text="Name"></asp:Label> 

    </td> 

  </tr> 

  <tr> 



    <td><asp:TextBox ID="txtFirst" 

runat="server"></asp:TextBox> 

    </td> 

    <td><asp:TextBox ID="txtLast" 

runat="server"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:Label ID="lblEmail" 

runat="server" Text="Email"></asp:Label> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:TextBox ID="txtEmail" 

runat="server"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:Label 

ID="lblHomeAddr" runat="server" Text="Home 

Address"></asp:Label> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:TextBox 

ID="txtHomeAddr" runat="server"></asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:Label 

ID="lblMailingAddr" runat="server" 

Text="Mailing Address"></asp:Label> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"><asp:TextBox 

ID="txtMailingAddr" runat="server">

</asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td colspan="2"></td> 

  </tr> 

  <tr> 

    <td colspan="2"> 

      <asp:Button ID="btnSubmit" 

runat="server" Text="Submit" /> 

      <asp:Button ID="btnReset" runat="server" 



Text="Reset" /> 

    </td> 

  </tr> 

</table>

6. Add the following style to the head element to give a blue border
to the active element:

<style type="text/css"> 

  .active{ 

    border-color:blue; 

  } 

</style>

How to do it…
Include the following jQuery code in a <script> block on the page:

<script type="text/javascript"> 

  $(document).ready(function () { 

    $("#<%=chkHighlight.ClientID%>").on("click", 

function () { 

      if ($(this).is(":checked")) { 

        $("input:text").on("focus", function () { 

          $(this).addClass("active"); 

        }); 

        $("input:text").on("blur", function () { 

          $(this).removeClass("active"); 

        }); 

      } else { 

        $("input:text").off(); 

      } 

    }); 

  }); 

</script>

How it works…
The page works as follows:

1. Run the application by pressing the F5 key. When the page
loads up, the checkbox control is unchecked. By checking the



checkbox control, its click event handler is executed:
$("#<%=chkHighlight.ClientID%>").on("click", 

function () {...}

2. The click event handler first checks whether the control is
checked. If it is checked, it adds event handlers to all TextBox
controls for the focus and blur events on the form. In the focus
event handler, the TextBox control is highlighted, and in blur, the
highlighting is removed as follows:

if ($(this).is(":checked")) { 

  $("input:text").on("focus", function () { 

    $(this).addClass("active"); 

  }); 

  $("input:text").on("blur", function () { 

    $(this).removeClass("active"); 

  }); 

}

3. If the CheckBox control is unchecked, all events handlers tied to
the TextBox controls are removed using the .off() method as
follows:

else { 

  $("input:text").off(); 

}

See also
The Running an event only once recipe



Chapter 4. DOM Traversal and
Manipulation in ASP.NET
This chapter looks at methods used for traversing the DOM tree and
the techniques that can be used for manipulating them. We will
discuss the following recipes in this chapter:

Adding/removing DOM elements
Accessing parent and child controls
Accessing sibling controls
Refining selection using a filter
Adding items to controls at runtime

Introduction
The Document Object Model (DOM) provides a representation for
web pages as structured documents with a tree-like format. Each
node in the tree is tied to properties, methods, and event handlers.
The web page is itself referred to as the document object and can be
accessed from the window object using window.document. The HTML
elements on the page become element nodes such as a head
element or body element. These nodes, in turn, can have children
nodes such as table, div, input, and so on. Some nodes may be
text nodes while some may also be comment nodes.

It is important to note that the DOM is not a programming language
but rather an object-oriented model that can be used across various
languages, such as JavaScript, HTML, and XML. Thus, it is
language-independent and provides a common Application
Programming Interface (API) that can be implemented by various
languages. By connecting web pages to programming languages,
you can manipulate their style, structure, and content.



jQuery provides many methods for traversing the DOM tree such as
accessing the parent, children, sibling, or next/previous elements.
Using jQuery, DOM elements can be added, removed, or cloned at
runtime using the client code. In this chapter, we will see how this
can be accomplished.



Adding/removing DOM
elements
This recipe demonstrates how to clone elements on the DOM. We
will also see how to remove elements completely from the DOM tree.
The programming constructs used in this example are summarized
in the following table:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on
its ID

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

.addClass() jQuery
method

This adds the specified CSS class
to each matched element.

.attr("name") or

.attr("name", "value")

jQuery
method

This returns a string with the
required attribute value of the first
matched element. It can also be
used to set the attribute to the
required value.



Construct Type Description

[attribute= "value"] jQuery
selector

This selects an element with the
specified attribute equal to the
"value" string.

.appendTo() jQuery
method

This inserts elements at the end
of the target.

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.

.clone() jQuery
method

This makes a deep copy of the
matched elements, that is, the
matched elements are copied
along with their descendants and
text nodes.

event.preventDefault() jQuery
method

This prevents the default action of
the event from being triggered.

.find() jQuery
method

This finds all elements that match
the filter.

.length jQuery
property

This returns the number of
elements in the jQuery object.



Construct Type Description

.on() jQuery
event
binder

This attaches an event handler
for one or more events to the
matched elements.

.remove() jQuery
method

This removes the matched
elements as well as their
descendants from the document.
All the related data and events
are also removed.

.removeClass() jQuery
method

This removes the specified CSS
class from each matched
element.

.val() jQuery
method

This returns the value of the first
matched element or sets the
value of every matched element.

Getting ready
Follow these steps to create a page for showing the adding and
removing of DOM elements:

1. In this recipe, let's create a subsection of a job application form
where the applicant needs to key in the current and past
working experience. Since this is a variable section and different
applicants can have different number of job experiences, we will



let the user add new subsections if required. Once the page is
loaded, the following form will be displayed:

2. When you click on the Add Work Experience link, a new
subsection is added as follows:



3. When you click on the Remove Work Experience link, a
prompt message is displayed to the user, as shown in the
following screenshot:

By clicking on Cancel, the action is dismissed. By clicking on
OK, the previous subsection is permanently removed from the
form.

4. To get started, create a new ASP.NET Web Application project
in Visual Studio using the Empty template and name it Recipe1
(or any other suitable name).

5. Add a Scripts folder to the project and include the jQuery library
files in this folder.

6. Add a new web form and include the jQuery library in this form.
7. Add two form fields: Company Name and Designation to the form.

Drag and drop two LinkButton controls below these fields: one
to add a new section and the other to remove the previous
section. Also, add two Button controls to the form for the Submit
and Reset functions, respectively. Thus, the markup of the form
will be as follows:



<div id="container"> 

  <asp:Panel ID="pnlWorkExp" runat="server" 

CssClass="addPanel"> 

    <table> 

      <tr> 

        <td> 

          <asp:Label ID="lblCompany" 

runat="server" Text="Company Name:">

</asp:Label> 

        </td> 

        <td> 

          <asp:TextBox ID="txtCompany" 

runat="server"></asp:TextBox> 

        </td> 

      </tr> 

      <tr> 

        <td> 

          <asp:Label ID="lblDesignation" 

runat="server" Text="Designation:">

</asp:Label> 

        </td> 

        <td> 

          <asp:TextBox ID="txtDesignation" 

runat="server"></asp:TextBox> 

        </td> 

      </tr> 

    </table> 

  </asp:Panel> 

</div> 

<asp:LinkButton ID="lnkAddWorkExp" 

runat="server">Add Work 

Experience</asp:LinkButton> 

&nbsp;&nbsp; 

<asp:LinkButton ID="lnkRemWorkExp" 

runat="server">Remove Work 

Experience</asp:LinkButton> 

<br /><br /> 

<asp:Button ID="btnSubmit" runat="server" 

Text="Submit" /> 

&nbsp;&nbsp; 

<asp:Button ID="btnReset" runat="server" 

Text="Reset" />

8. Note that the form has a container div area consisting of a Panel
control. We will be cloning this Panel on every click of the Add
Work Experience link. Add the following styles to this Panel:



.addPanel { 

  border: solid; 

  border-width: 1 px; 

  border-color: darkgray; 

  width: 300 px; 

  padding: 10 px; 

  margin: 10 px; 

}

9. We will also add a style to disabled controls on the page:
.disabled{ 

  color:gray; 

  text-decoration:none; 

}

How to do it…
Add the following jQuery code to a <script> block in the form:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("#

<%=lnkRemWorkExp.ClientID%>").attr("disabled", 

true).addClass("disabled"); 

  $("#<%=lnkAddWorkExp.ClientID%>").on("click", 

function(evt) { 

    evt.preventDefault(); 

    var cnt = $(".addPanel").length + 1; 

    var clone = $("#

<%=pnlWorkExp.ClientID%>").clone(); 

    clone.attr("ID", "<%=pnlWorkExp.ClientID%>_" + 

cnt); 

    clone.find("#

<%=lblCompany.ClientID%>").attr("ID", "

<%=lblCompany.ClientID%>_" + cnt); 

    clone.find("#

<%=txtCompany.ClientID%>").attr("ID", "

<%=txtCompany.ClientID%>_" + cnt).attr("name", "

<%=txtCompany.ClientID%>_" + cnt).val(""); 

    clone.find("#

<%=lblDesignation.ClientID%>").attr("ID", "

<%=lblDesignation.ClientID%>_" + cnt); 

    clone.find("#



<%=txtDesignation.ClientID%>").attr("ID", "

<%=txtDesignation.ClientID%>_" + cnt).attr("name", 

"<%=txtDesignation.ClientID%>_" + cnt).val(""); 

    clone.appendTo("#container"); 

    $("#

<%=lnkRemWorkExp.ClientID%>").attr("disabled", 

false).removeClass("disabled"); 

  }); 

  $("#<%=lnkRemWorkExp.ClientID%>").on("click", 

function(evt) { 

    evt.preventDefault(); 

    var cnt = $(".addPanel").length; 

    if (cnt > 1) { 

      if (confirm("Are you sure you want to remove 

the above section?")) { 

        $("#<%=pnlWorkExp.ClientID%>_" + 

cnt).remove(); 

        cnt--; 

        if (cnt == 1) 

          $("#

<%=lnkRemWorkExp.ClientID%>").attr("disabled", 

false).addClass("disabled"); 

      } 

    } 

  }); 

  $("#<%=btnSubmit.ClientID%>").on("click", 

function(evt) { 

    evt.preventDefault(); 

    //handle form submission using AJAX here 

  }); 

  $("#<%=btnReset.ClientID%>").on("click", 

function(evt) { 

    evt.preventDefault(); 

    $("input[type=text]").val(""); 

  }); 

}); 

</script>

How it works…
Let's see how to add and remove the DOM elements:

1. In the jQuery code, the Remove Work Experience link is
initially disabled by setting its disabled attribute to true as
follows:



$("#

<%=lnkRemWorkExp.ClientID%>").attr("disabled", 

true).addClass("disabled");

Thus, initially on page load, the link will not be clickable.

2. Event handlers are attached to the LinkButton controls to add
and remove the subsections as well as the Button controls to
submit and reset the form:

$("#<%=lnkAddWorkExp.ClientID%>").on("click", 

function (evt) {…}); 

$("#<%=lnkRemWorkExp.ClientID%>").on("click", 

function (evt) {…}); 

$("#<%=btnSubmit.ClientID%>").on("click", 

function (evt) {…}); 

$("#<%=btnReset.ClientID%>").on("click", 

function (evt) {…});

3. In the event handler of the Add Work Experience link, we are
going to make a deep copy of the Panel control using the
.clone() function. We will need to update the ID, name, and
value of each child control to avoid duplicates on the page. To
get started with this, first prevent posting of the form due to the
button click action:

evt.preventDefault();

Since we need a unique ID for each element, let's set the ID of
each cloned element to OriginalID_N where, OriginalID is equal
to the ID of the element that is cloned. N is equal to the Nth
instance of the original element.

To determine the value of N, first determine the total number of
Panel controls on the form that have the addPanel CSS class.
Increment this count by 1 to get the number of the next instance,
as follows:

var cnt = $(".addPanel").length + 1;



Make a copy of the original Panel control:

var clone = $("#

<%=pnlWorkExp.ClientID%>").clone();

Update the ID of the cloned Panel to OriginalID_N:

clone.attr("ID", "<%=pnlWorkExp.ClientID%>_" + 

cnt);

Now, start updating the ID and name of its child elements to
OriginalID_N. If any data has been entered into the controls, the
data will be replicated as well. Hence, reset the data of the
cloned text controls, as follows:

clone.find("#

<%=lblCompany.ClientID%>").attr("ID", "

<%=lblCompany.ClientID%>_" + cnt); 

clone.find("#

<%=txtCompany.ClientID%>").attr("ID", "

<%=txtCompany.ClientID%>_" + cnt).attr("name", 

"<%=txtCompany.ClientID%>_" + cnt).val(""); 

clone.find("#

<%=lblDesignation.ClientID%>").attr("ID", "

<%=lblDesignation.ClientID%>_" + cnt); 

clone.find("#

<%=txtDesignation.ClientID%>").attr("ID", "

<%=txtDesignation.ClientID%>_" + 

cnt).attr("name", "

<%=txtDesignation.ClientID%>_" + cnt).val("");

Now, the cloned Panel is ready to be appended to the container
div area:

clone.appendTo("#container");

Enable the Remove Work Experience link by updating its
disabled attribute to false:



$("#

<%=lnkRemWorkExp.ClientID%>").attr("disabled", 

false).removeClass("disabled");

4. When you click on the Remove Work Experience link, we will
remove the most recently added Panel from the form. To do this,
first prevent posting of the form on the click event:

evt.preventDefault();

Get the number of the last added Panel on the form, as follows:

var cnt = $(".addPanel").length;

If the panel is the original element, that is, the first panel on the
form, it will not be removed. If there are more than one Panel
controls on the form, we need to show the confirmation dialog
box to the user. The user can dismiss the dialog box by clicking
on Cancel. If the user clicks on OK, we use the .remove()
function to delete the Panel as well its child elements.

Since the number of Panels is reduced by 1, we can decrease
the count by 1. If only one panel is left behind, disable the
remove link to avoid removing the original panel:

if (cnt > 1) { 

  if (confirm("Are you sure you want to remove 

the above section?")){ 

    $("#<%=pnlWorkExp.ClientID%>_" + 

cnt).remove(); 

    cnt--; 

    if (cnt == 1) 

      $("#

<%=lnkRemWorkExp.ClientID%>").attr("disabled", 

false).addClass("disabled"); 

  } 

}



Note
Since DOM elements are added using the client code, they
are not accessible by the server side. Hence, in the event
handler of the Submit button, retrieve the contents of all
DOM elements and post them to the server using AJAX.
This technique of posting form contents is demonstrated in
the Serializing form data recipe in Chapter 9, Useful jQuery
Recipes for ASP.NET Sites, which is available at:
https://www.packtpub.com/sites/default/files/downloads/4836
OT_Chapter_09.

5. In the event handler of the Reset button, prevent posting of the
form and reset the value of all text controls as follows:

 evt.preventDefault(); 

 $("input[type=text]").val("");

See also
The Accessing sibling controls recipe

https://www.packtpub.com/sites/default/files/downloads/4836OT_Chapter_09


Accessing parent and child
controls
This recipe demonstrates how to access parent and child elements
in the DOM when performing client-side validation of a sample form.
The constructs used in this example are summarized as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on
its ID

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag

$(this) jQuery
object

This refers to the current jQuery
object

.addClass() jQuery
method

This adds the specified CSS class
to each matched element

:checked jQuery
selector

This selects checked input
elements



Construct Type Description

.children() jQuery
method

This returns the immediate
descendant element of the
matched elements

.each() jQuery
method

This iterates over the matched
elements and executes a function
for each element

event.preventDefault() jQuery
method

This prevents the default action of
the event from being triggered

.find() jQuery
method

This finds all elements that match
the filter

.length jQuery
property

This returns the number of
elements in the jQuery object

.parent() jQuery
method

This returns the immediate parent
element of the matched elements

.prop(propertyName) or

.prop(propertyName,

value)

jQuery
method

This returns the value of the
specified property for the first
matched element or sets the
value of the specified property for
all matched elements



Construct Type Description

.removeClass() jQuery
method

This removes the specified CSS
class from each matched element

:selected jQuery
selector

This retrieves the selected input
elements

.val() jQuery
method

This returns the value of the first
matched element or sets the
value of every matched element

Getting ready
Following are the steps to build a page to demonstrate accessing of
parent and child controls:

1. We will be validating a form that registers interested volunteers
with the school museum. The form consists of the following
fields:



When you click on the Submit button, the fields are validated
according to the following rules:

All fields are compulsory, that is, they should be nonempty
The Availability field should have at least three entries
selected

Fields that fail the validation are highlighted in red, as shown
here:



2. To create this form, launch a new ASP.NET Web Application in
Visual Studio using the Empty template and name it Recipe2 (or
any other suitable name).

3. Add a Scripts folder and include the jQuery library in this folder.
4. Create a web form and include the jQuery library in the form.
5. Add the following markup to the page:

<table id="container"> 

<tr><td> 

<asp:Label ID="lblSalutation" runat="server" 

Text="Salutation:"></asp:Label></td> 

<td><asp:DropDownList ID="ddlSalutation" 

runat="server"> 

<asp:ListItem Text="---Please Select---" 

  Value=""></asp:ListItem> 



<asp:ListItem Text="Mr" Value="Mr">

</asp:ListItem> 

<asp:ListItem Text="Ms" Value="Ms">

</asp:ListItem> 

<asp:ListItem Text="Mrs"  

  Value="Mrs"></asp:ListItem> 

<asp:ListItem Text="Dr" Value="Dr">

</asp:ListItem> 

<asp:ListItem Text="Prof"  

  Value="Prof"></asp:ListItem> 

</asp:DropDownList> 

</td> 

</tr> 

<tr> 

  <td> 

    <asp:Label ID="lblName" runat="server"  

      Text="Name:"></asp:Label> 

  </td> 

  <td> 

    <asp:TextBox ID="txtName"  

      runat="server"></asp:TextBox> 

  </td> 

</tr> 

<tr> 

  <td> 

    <asp:Label ID="lblAffiliation" 

runat="server"  

      Text="Type of Affiliation:"></asp:Label> 

  </td> 

  <td> 

    <asp:RadioButtonList ID="rdlAffiliation"  

      runat="server"> 

      <asp:ListItem Text="Staff"  

        Value="Staff"></asp:ListItem> 

      <asp:ListItem Text="Student"  

        Value="Student"></asp:ListItem> 

      <asp:ListItem Text="Alumni"  

        Value="Alumni"></asp:ListItem> 

    </asp:RadioButtonList> 

  </td> 

</tr> 

<tr> 

  <td> 

    <asp:Label ID="lblLanguages" 

runat="server"  

      Text="Spoken Languages:"></asp:Label> 

  </td> 

  <td> 



    <asp:CheckBoxList ID="chkLanguages" 

runat="server"> 

      <asp:ListItem Text="English"  

        Value="English"></asp:ListItem> 

      <asp:ListItem Text="Chinese"  

        Value="Chinese"></asp:ListItem> 

      <asp:ListItem Text="Malay"  

        Value="Malay"></asp:ListItem> 

      <asp:ListItem Text="Tamil"  

        Value="Tamil"></asp:ListItem> 

    </asp:CheckBoxList> 

  </td> 

</tr> 

<tr> 

  <td> 

    <asp:Label ID="lblAvailability" 

runat="server"  

      Text="Availability (Select any 3):">

</asp:Label> 

  </td> 

  <td> 

    <asp:ListBox ID="lstAvailability" 

runat="server"  

      SelectionMode="Multiple" Width="100%" 

Height="82px" > 

      <asp:ListItem Text="Weekdays AM"  

        Value="WeekdaysAM"></asp:ListItem> 

      <asp:ListItem Text="Weekdays PM"  

        Value="WeekdaysPM"></asp:ListItem> 

      <asp:ListItem Text="Weekend AM"  

        Value="WeekendAM"></asp:ListItem> 

      <asp:ListItem Text="Weekend PM"  

        Value="WeekendPM"></asp:ListItem> 

      <asp:ListItem Text="Public Holidays"  

        Value="PublicHolidays"></asp:ListItem> 

    </asp:ListBox> 

  </td> 

</tr> 

<tr> 

  <td colspan="2"> 

    <asp:Button ID="btnSubmit" runat="server"  

      Text="Submit" /> 

    <asp:Button ID="btnReset" runat="server" 

Text="Reset"  

      /> 

  </td> 

</tr> 

</table>



6. To show a border and background color for controls that are
invalid, include the following style:

.error{ 

  border-style:solid; 

  border-color:red; 

  background-color:lightpink; 

}

7. Add the following style to the container table to give sufficient
padding between the controls:

#container{ 

  padding:10px; 

}

How to do it…
Add the following jQuery code to a <script> block on the form:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("#

<%=btnSubmit.ClientID%>").click(function(evt) { 

    evt.preventDefault(); 

    //Salutation field 

    if ($("#<%=ddlSalutation.ClientID%>").val() == 

"") $("#

<%=ddlSalutation.ClientID%>").parent().addClass("e

rror"); 

    else $("#

<%=ddlSalutation.ClientID%>").parent().removeClass

("error"); 

    //Name field 

    if ($("#<%=txtName.ClientID%>").val() == "") 

      $("#

<%=txtName.ClientID%>").parent().addClass("error")

; 

    else 

      $("#

<%=txtName.ClientID%>").parent().removeClass("erro

r"); 

    //Affiliation field 



    var rdlAffCount = $("#

<%=rdlAffiliation.ClientID%>").find("input:checked

").length; 

    if (rdlAffCount == 0) $("#

<%=rdlAffiliation.ClientID%>").parent().addClass("

error"); 

    else $("#

<%=rdlAffiliation.ClientID%>").parent().removeClas

s("error"); 

    //Languages field 

    var chkLanguagesCount = $("#

<%=chkLanguages.ClientID%>").find("input:checked")

.length; 

    if (chkLanguagesCount == 0) $("#

<%=chkLanguages.ClientID%>").parent().addClass("er

ror"); 

    else $("#

<%=chkLanguages.ClientID%>").parent().removeClass(

"error"); 

    //Availability field 

    var lstAvailCount = $("#

<%=lstAvailability.ClientID%>").children("option:s

elected").length; 

    if (lstAvailCount != 3) $("#

<%=lstAvailability.ClientID%>").parent().addClass(

"error"); 

    else $("#

<%=lstAvailability.ClientID%>").parent().removeCla

ss("error"); 

  }); 

  $("#<%=btnReset.ClientID%>").click(function(evt) 

{ 

    evt.preventDefault(); 

    //Salutation field 

    $("#<%=ddlSalutation.ClientID%>").val(""); 

    $("#

<%=ddlSalutation.ClientID%>").parent().removeClass

("error"); 

    //Name field 

    $("#<%=txtName.ClientID%>").val(""); 

    $("#

<%=txtName.ClientID%>").parent().removeClass("erro

r"); 

    //Affiliation field 

    $("#<%=rdlAffiliation.ClientID%> 

input").each(function() { 

      $(this).prop("checked", false); 

    }); 



    $("#

<%=rdlAffiliation.ClientID%>").parent().removeClas

s("error"); 

    //Languages field 

    $("#<%=chkLanguages.ClientID%> 

input").each(function() { 

      $(this).prop("checked", false); 

    }); 

    $("#

<%=chkLanguages.ClientID%>").parent().removeClass(

"error"); 

    //Availability field 

    $("#<%=lstAvailability.ClientID%> 

option").each(function() { 

      $(this).prop("selected", false); 

    }); 

    $("#

<%=lstAvailability.ClientID%>").parent().removeCla

ss("error"); 

  }); 

}); 

</script>

How it works…
Let's see how to access the parent and child controls:

1. When you click on the Submit button, the page is prevented
from posting back to the server:

evt.preventDefault();

2. Next, the fields are validated step by step, starting with the first
control, which is a DropDownList control. If no option is selected
from this control, we will need to mark it as invalid. To do this,
get its parent element—that is, the table cell container and
highlight it by adding the error CSS style. If, however, the field
is not empty, then any highlighting should be removed from the
parent table cell:

if ($("#<%=ddlSalutation.ClientID%>").val() == 

"") $("#

<%=ddlSalutation.ClientID%>").parent().addClas

s("error" ); 



else $("#

<%=ddlSalutation.ClientID%>").parent().removeC

lass("err or");

3. Next, validate the textbox field. If the field is empty, get its
parent element—that is, the container table cell, and add the
error CSS style to it. If the field is not empty, remove any
highlighting attached to it:

if ($("#<%=txtName.ClientID%>").val() == "") 

$("#

<%=txtName.ClientID%>").parent().addClass("err

or"); 

else 

$("#

<%=txtName.ClientID%>").parent().removeClass("

error");

4. The third field on the form is the Affiliation field, which is
defined as a RadioButtonList control. To determine whether any
radio button is selected, we use the :checked selector:

var rdlAffCount = $("#

<%=rdlAffiliation.ClientID%>").find("input:che

cked").le ngth;

Note that, at runtime, the RadioButtonList control is rendered as
a table element, and each ListItem control is rendered as an
input element with type = radio in a table row element, as
shown in the following HTML source:

Hence, we use the .find() function to search through the
descendants of the table to find the required input elements.



If no option is selected, the parent table cell is highlighted to
indicate that it is an invalid field. Otherwise, any highlighting
attached to the cell can be removed:

if (rdlAffCount == 0) $("#

<%=rdlAffiliation.ClientID%>").parent().addCla

ss("error "); 

else $("#

<%=rdlAffiliation.ClientID%>").parent().remove

Class("er ror");

5. Next, we will validate the Spoken Languages field, which is
defined as a CheckBoxList control. At runtime, the CheckBoxList
control is rendered as a table element, and each ListItem
control is rendered as an input element with type = checkbox in
a table row element, as shown in the following HTML source:

So, once again, we use the .find() function to search through
the descendants of the table to determine the input elements, as
follows:

var chkLanguagesCount = $("#

<%=chkLanguages.ClientID%>").find("input:check

ed").length;

If no checkbox has been checked, then mark the field as invalid;
otherwise, mark it as valid, as follows:



if (chkLanguagesCount == 0) $("#

<%=chkLanguages.ClientID%>").parent().addClass

("error"); 

else$("#

<%=chkLanguages.ClientID%>").parent().removeCl

ass("error");

6. Lastly, we check the Availability field, which is defined as a
ListBox control. Here, the condition for a successful validation is
that at least three entries should be selected. So, first find out
the total number of selected choices by filtering the options
using the :selected selector:

var lstAvailCount = $("#

<%=lstAvailability.ClientID%>").children("opti

on:select ed").length;

Note that, at runtime, the ListBox control is rendered as a select
element, and each ListItem control is rendered as an option
element, as follows:

The .children() function is used since the option element is an
immediate descendant of the select element, and we do not
need to search through all the descendants.

If the number of selected options is not equal to 3, then mark the
field as invalid; otherwise, mark it as valid as follows:

if (lstAvailCount != 3)$("#

<%=lstAvailability.ClientID%>").parent().addCl

ass("error"); 

else$("#

<%=lstAvailability.ClientID%>").parent().remov

eClass("e rror");



7. When you click on the Reset button, we need to clear the data
entered into the form fields (if any). At the same time, the error
CSS class attached to any table cell should also be removed.

8. When you click on the Reset button, first prevent posting of the
form to the server:

evt.preventDefault();

9. Next, reset the value of the first DropDownList field, and remove
any error styles attached to it:

$("#<%=ddlSalutation.ClientID%>").val("");            

$("#

<%=ddlSalutation.ClientID%>").parent().removeC

lass("error");

10. Next, repeat the same process for the TextBox field:
$("#<%=txtName.ClientID%>").val(""); $("#

<%=txtName.ClientID%>").parent().removeClass("

error");

11. For the RadioButtonList, CheckBoxList, and ListBox controls,
loop through each option and reset the selection (if any). Also,
remove the error styles (if any):

$("#<%=rdlAffiliation.ClientID%> 

input").each(function() { 

  $(this).prop("checked", false); 

}); 

$("#

<%=rdlAffiliation.ClientID%>").parent().remove

Class("er ror"); 

$("#<%=chkLanguages.ClientID%> 

input").each(function() { 

  $(this).prop("checked", false); 

}); 

$("#

<%=chkLanguages.ClientID%>").parent().removeCl

ass("erro r"); 

$("#<%=lstAvailability.ClientID%> 

option").each(function() { 

  $(this).prop("selected", false); 

}); 

$("#



<%=lstAvailability.ClientID%>").parent().remov

eClass("e rror");

See also
The Adding / removing DOM elements recipe



Accessing sibling controls
In the previous recipe, we traversed upwards and downwards from
an element in the DOM tree. In this recipe, let's traverse to other
controls on the same level. The constructs used in this example are
summarized as follows:

Construct Type Description

$(".class") jQuery
selector

This matches all elements with
the specified CSS class

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag

$(this) jQuery
object

This refers to the current jQuery
object

.click() jQuery
event
binder

This binds a handler to the click
event of an element

event.preventDefault() jQuery
method

This prevents the default action of
the event from being triggered



Construct Type Description

.focus() jQuery
event
binder

This triggers the focus event of an
element or binds an event handler
to the focus event

.prop(propertyName) or

.prop(propertyName,

value)

jQuery
method

This returns the value of the
specified property for the first
matched element or sets the
value of the specified property for
all matched elements

.siblings() jQuery
method

This retrieves the siblings of the
matched elements

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text content
of every matched element

Getting ready
Follow these steps to build a page for accessing sibling controls:

1. To demonstrate how to access sibling controls, create the
following content management interface to edit reports. All text
sections are read-only and are provided with EDIT links for any
updates required, as shown in the following screenshot:



2. When you click on any EDIT link, the corresponding sibling text
field is made editable as follows:



3. By clicking on the SAVE link, the text field becomes read-only
once again.

4. To create this form, launch a new ASP.NET Web Application
project in Visual Studio using the Empty template, and name it
Recipe3 (or any other suitable name).

5. Add a Scripts folder to the project and include the jQuery library
in this folder.

6. Add a new web form and include the jQuery library in the form.
7. For each text field in the form, we will use a TextBox control in

the MultiLine mode. So, add the following markup to the .aspx



page. The content of the TextBox controls can be any random
text, as follows:

<table> 

  <tr> 

    <td> 

      <asp:Label ID="lblTitle" runat="server" 

Text="Title" CssClass="sectionHeader">

</asp:Label> 

      <asp:LinkButton ID="lnkEdit1" 

CssClass="edit" 

runat="server">Edit</asp:LinkButton><br /> 

      <asp:TextBox ID="txtTitle" 

runat="server" TextMode="MultiLine" Rows="5" 

Columns="50">Lorem ipsum dolor sit amet...

</asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblDescription" 

runat="server" Text="Description" 

CssClass="sectionHeader"></asp:Label> 

      <asp:LinkButton ID="lnkEdit2" 

CssClass="edit" 

runat="server">Edit</asp:LinkButton><br /> 

      <asp:TextBox ID="txtDescription" 

runat="server" TextMode="MultiLine" Rows="5" 

Columns="50">Nullam blandit...</asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <asp:Label ID="lblAnalysis" 

runat="server" Text="Analysis" 

CssClass="sectionHeader"></asp:Label> 

      <asp:LinkButton ID="lnkEdit3" 

CssClass="edit" 

runat="server">Edit</asp:LinkButton><br /> 

      <asp:TextBox ID="txtAnalysis" 

runat="server" TextMode="MultiLine" Rows="5" 

Columns="50">Vestibulum vulputate... 

</asp:TextBox> 

    </td> 

  </tr> 

  <tr> 

    <td> 



      <asp:Label ID="lblSummary" 

runat="server" Text="Summary" 

CssClass="sectionHeader"></asp:Label> 

      <asp:LinkButton ID="lnkEdit4" 

CssClass="edit" 

runat="server">Edit</asp:LinkButton><br /> 

      <asp:TextBox ID="txtSummary" 

runat="server" TextMode="MultiLine" Rows="5" 

Columns="50">Phasellus tempor...</asp:TextBox> 

    </td> 

  </tr> 

</table>

8. To differentiate between the read-only and update modes, in
read-only mode, we can give a background color to the TextBox
controls by adding the following style:

.readtext{ 

  background-color:powderblue; 

}

9. Also, add the following styles to the EDIT/SAVE links and
section headers:

.edit { 

  font-variant: small - caps; 

  text-decoration: none; 

} 

.sectionHeader { 

  font-size: 20 px; 

  font-variant: small-caps; 

  font-weight: 700; 

  padding: 10 px; 

}

How to do it…
Add the following jQuery code to a <script> block on the form:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("textarea").prop("readonly", 

true).addClass("readtext"); 

  $(".edit").click(function(evt) { 



    evt.preventDefault(); 

    var lnkText = $(this).text(); 

    if (lnkText == "Edit") { 

      

$(this).siblings("textarea").prop("readonly", 

false).removeClass("readtext").focus(); 

      $(this).text("Save"); 

    } else if (lnkText == "Save") { 

      

$(this).siblings("textarea").prop("readonly", 

true).addClass("readtext"); 

      $(this).text("Edit"); 

    } 

  }); 

}); 

</script>

How it works…
Let's see how to access the sibling controls:

1. Initially, when the page loads in the browser, all TextBox controls
are made uneditable by setting their readonly property to true.
At runtime, the TextBox controls in the MultiLine mode are
rendered as textarea elements. Hence, we can use the .prop()
method as follows:

$("textarea").prop("readonly", 

true).addClass("readtext");

Note
The CSS class added earlier ensures that a background color
is applied to the TextBox controls.

2. All EDIT LinkButton controls are tied to an edit CSS class.
Hence, we can use the CSS selector to attach a handler to the
click event of each link as follows:



$(".edit").click(function (evt) {..});

3. When you click on any of the preceding links, firstly, prevent
page submission:

evt.preventDefault();

Secondly, get the text of the link. This text can be either EDIT
or SAVE, depending on the user's action:

var lnkText = $(this).text();

4. If the link text is EDIT, we use the .siblings() method to
traverse through other elements on the same level until we
come across a textarea element. Once the element is located,
the following needs to be done:

Set the readonly property of the textarea element to false,
that is, make the field editable
Remove the background color by removing the
corresponding style
Focus the cursor on the field

This can be done by chaining the methods in a single statement:

$(this).siblings("textarea").prop("readonly", 

false).removeClass("readtext").focus(); 

Lastly, update the text of the link to SAVE:

$(this).text("Save");

5. If you click on the SAVE link, the following needs to be done:

Set the readonly property of the sibling textarea element to
true, that is, make the field uneditable
Add a background color to the textarea element



This can be done by chaining the methods in the following
statement:

$(this).siblings("textarea").prop("readonly", 

true).addClass("readtext");

Next, update the link text to display EDIT instead:

$(this).text("Edit");

Note
Note that, by clicking on the SAVE link, you might also need
to perform some server-side action such as saving the
content to a database or file using AJAX.

There's more…
Let's use the developer tools in the browser window to view the
changes in the properties of the active textarea field. The developer
tools can be launched as follows:

In Internet Explorer, from the main menu, go to Tools | F12
Developer Tools
In Firefox, from the main menu, go to Developer | Toggle Tools
| Debugger (Ctrl + Shift + I)
In Google Chrome, from the main menu, go to More tools |
Developer tools (Ctrl + Shift + I)

Add the required breakpoints to the jQuery script, as shown in the
following screenshot:



Step through the code to see the change in the readonly property
and background color of the active textarea element.

See also
The Accessing parent and child controls recipe



Refining selection using a filter
jQuery provides a useful .filter()method to filter elements using a
selector or custom function. In this recipe, we will filter the rows of a
GridView control on the client side using this method. The constructs
used in this example are summarized in the following table:

Construct Type Description

$(#identifier) jQuery
selector

This selects an element based
on its ID

$(".class") jQuery
selector

This matches all elements with
the specified CSS class

$("html_tag") jQuery
selector

This selects all elements with
the specified HTML tag

$(this) jQuery
object

This refers to the current
jQuery object

.click() jQuery
event
binder

This binds a handler to the
click event of an element

:eq(i) jQuery
selector

This selects all elements with
the index equal to i.



Construct Type Description

event.

preventDefault()

jQuery
method

This prevents the default action
of the event from being
triggered

.filter() jQuery
method

This returns elements that
match a selector or custom
function

.find() jQuery
method

This finds all elements that
match the filter

:first-child jQuery
selector

This selects elements that are
the first child of the parent
elements

.hide() jQuery
method

This hides the matched
elements

:not(selector) jQuery
selector

This selects elements that do
not match the specified selector

.show() jQuery
method

This displays the matched
elements



Construct Type Description

.substring(startIndex,

[endIndex])

JavaScript
function

This returns a substring of a
given string from startIndex to
endIndex or to the end of the
string

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text
content of every matched
element

:visible jQuery
selector

This selects elements that are
visible, that is, elements with a
width or height > 0

Getting ready
Let's build a page to refine selection using a filter:

1. Let's create a web page with a GridView control that reads data
from the Products table in the Northwind database. When you
run the page, all records are retrieved and displayed, as shown
here:



2. When you click on any letter from A to Z above the GridView
control, the rows are filtered to show the product names that
begin with the selected letter. For example, when you click on
the letter R, the page will display all product names beginning
with the letter R, as shown in the following screenshot:



If there are no product names that start with the selected letter,
a message is displayed to the user, as shown in the following
screenshot:



3. To get started, create a new ASP.NET Web Application project
in Visual Studio using the Empty template and name it Recipe4
(or any other suitable name).

4. Add a Scripts folder to the project and include the jQuery library
files in this folder.

5. Create a new web form and add the jQuery library to the form.
6. Go to Toolbox | Data, and drag and drop a GridView control

onto the form.
7. In the Design mode, mouse over the GridView control until a

small arrow icon appears in the top-right corner of the screen.
Click on the arrow to show the GridView Tasks menu, as
shown here:



8. Select the <New data source…> option from the Choose Data
Source field from the preceding menu. This will launch the Data
Source Configuration Wizard, Select SQL Database from the
available options, and click on OK to proceed:

9. On the next screen, add a connection to the Northwind
database. This will launch the Configure the Select Statement
screen, as shown in the following screenshot. Select the
Products table, and choose few columns for display such as



ProductID, ProductName, UnitPrice, and UnitsInStock. Click
on Next to proceed. Test the query to complete the wizard.

10. To display a list of letters from A to Z for filtering the GridView
control, we will use a Repeater control. Hence, drag and drop a
Repeater control by navigating to Toolbox | Data. In the code-
behind file, populate the Repeater control using DataTable as
follows:

For VB, the code is as follows:

Private Sub Repeater1_BindData() 

  Dim dt As DataTable = New DataTable() 

  dt.Columns.Add("Alphabet") 

  Dim cnt As Integer 

 

  For cnt = 65 To 90 Step 1 

    dt.Rows.Add(Chr(cnt)) 



  Next 

 

  dt.AcceptChanges() 

  Repeater1.DataSource = dt 

  Repeater1.DataBind() 

End Sub

For C#, the code is as follows:

private void Repeater1_BindData() 

{ 

  DataTable dt = new DataTable(); 

  dt.Columns.Add("Alphabet"); 

 

  for (int cnt= 65; cnt <= 90; ++cnt) 

    dt.Rows.Add((char)cnt); 

 

  dt.AcceptChanges(); 

  Repeater1.DataSource = dt; 

  Repeater1.DataBind(); 

}

In the preceding procedure, we use the ASCII code to generate
the alphabet list. Since the ASCII code of A is 65 and that of Z is
90, the loop runs from 65 to 90, generating the required character
from the ASCII code. The generated characters are stored in an
Alphabet column in the DataTable. This column will be used in
the Repeater markup for displaying.

11. To populate the Repeater control, call the preceding procedure
on loading the page:

For VB, the code is as follows:

Protected Sub Page_Load(ByVal sender As 

Object, ByVal e As System.EventArgs) Handles 

Me.Load 

  Repeater1_BindData 

End Sub

For C#, the code is as follows:



protected void Page_Load(object sender, 

EventArgs e) 

{ 

  Repeater1_BindData(); 

}

12. In the Design mode, in the <ItemTemplate> element of the
Repeater control, add a LinkButton control to display each letter
as a link button.

13. Also, add a Label control to the form. This Label will be
displayed when no records are retrieved for a particular filter.

14. The final markup of the .aspx page will be as follows:
<table> 

  <tr> 

    <td> 

      <asp:Repeater ID="Repeater1" 

runat="server" > 

        <ItemTemplate> 

          <asp:LinkButton 

CssClass="filterLink" runat="server">

<%#Eval("Alphabet") %></asp:LinkButton> 

        </ItemTemplate> 

      </asp:Repeater> 

    </td> 

  </tr> 

</table> 

<asp:GridView ID="GridView1" runat="server" 

AutoGenerateColumns="False" 

DataKeyNames="ProductID" 

DataSourceID="SqlDataSource1"> 

  <Columns> 

    <asp:BoundField DataField="ProductID" 

HeaderText="Product ID" InsertVisible="False" 

ReadOnly="True" SortExpression="ProductID" /> 

    <asp:BoundField DataField="ProductName" 

HeaderText="Product Name" 

SortExpression="ProductName" /> 

    <asp:BoundField DataField="UnitPrice" 

HeaderText="Unit Price" 

SortExpression="UnitPrice" /> 

    <asp:BoundField DataField="UnitsInStock" 

HeaderText="Units In Stock" 

SortExpression="UnitsInStock" /> 

  </Columns> 

</asp:GridView> 



<br /> 

<asp:Label ID="lblMessage" runat="server" 

Text="No records found" CssClass="message">

</asp:Label>

15. Add the following style to display information messages to the
user:

.message{ 

  color:red; 

}

The following style will give the padding to the respective
elements:

.filterLink{ 

  padding:2px; 

} 

th,td{ 

  padding:5px; 

}

How to do it…
Add the following jQuery code to a <script> block on the form:

<script type="text/javascript"> 

$(document).ready(function () { 

  $("#<%=lblMessage.ClientID%>").hide(); 

  $(".filterLink").click(function (evt) { 

    evt.preventDefault(); 

    var filterLetter = $(this).text(); 

    $("#<%=GridView1.ClientID%> tr:not(:first-

child)").hide().filter(function () { 

      if 

($(this).find("td:eq(1)").text().substring(0, 1) 

== filterLetter) 

      return this; 

      }).show(); 

    if (($("#<%=GridView1.ClientID%> 

tr:visible").length - 1) == 0) 

    $("#<%=lblMessage.ClientID%>").show(); 

    else 



    $("#<%=lblMessage.ClientID%>").hide(); 

  }); 

}); 

</script>

How it works…
Following steps shows the refining of selection using filter:

1. When the page is launched in the browser, initially, the Label
control that is used to display information messages to the user
is hidden:

$("#<%=lblMessage.ClientID%>").hide();

2. Each letter from A to Z above the GridView control is assigned a
filterLink CSS class. An event handler is attached to the click
event of these links using the CSS selector as follows:

$(".filterLink").click(function (evt) {..});

3. If you click on any of the preceding links, the page will be
prevented from posting back, as follows:

evt.preventDefault();

Next, retrieve the letter that was clicked. This can be done by
retrieving the text link:

var filterLetter = $(this).text();

To return only the rows that have product names beginning with
the clicked letter, select all rows except the header row using the
tr:not(:first-child) selector. These rows are hidden initially:

$("#<%=GridView1.ClientID%> tr:not(:first-

child)").hide()



Next, apply the filter() method. The td:eq(1) product name
cell is read, and we compare if its character begins with the
clicked letter:

.filter(function () { 

  if 

($(this).find("td:eq(1)").text().substring(0, 

1) == filterLetter) 

    return this; 

})

Only rows that satisfy the .filter() method are returned and
displayed:

.show();

4. Next, to display the information message if no rows are retrieved
from the filtering, we use the :visible filter to check the number
of rows that are visible. If only the header row is visible, we can
display the message to inform the user that no rows have been
returned:

if (($("#<%=GridView1.ClientID%> 

tr:visible").length - 1) == 0) 

  $("#<%=lblMessage.ClientID%>").show(); 

Otherwise, the message is hidden: 

else 

  $("#<%=lblMessage.ClientID%>").hide();

There's more…
The .children() method is an alternative to using the .find()
method. The difference between the two methods is that the
.children() method travels only one level down the DOM tree. Since
the td elements are the immediate descendants of the tr elements,
let's take a look at the following statement in the <script> block:

if ($(this).find("td:eq(1)").text().substring(0, 

1) == filterLetter)



This can be modified using the children() method, as follows:

if 

($(this).children("td:eq(1)").text().substring(0, 

1) == filterLetter)

See also
The Adding/removing DOM elements recipe



Adding items to controls at
runtime
In this recipe, we will use jQuery to add items to different ASP.NET
controls, such as DropDownList, ListBox, and BulletedList at
runtime. The constructs used in this example are summarized as
follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element using
its ID

$.map() jQuery
function

This transforms an array or
object into another array

.append() jQuery
method

This inserts content at the end
of each matched element

.click() jQuery
event
binder

This binds a handler to the
click event of an element

event.preventDefault() JavaScript
function

This prevents the default action
of the event from being
triggered



Construct Type Description

.focus() jQuery
event
binder

This triggers the focus event of
an element or binds an event
handler to the focus event

.prepend() jQuery
method

This inserts content at the
beginning of each matched
element

.split() JavaScript
function

This splits a string into
substrings using the specified
character as a delimiter

.trim() JavaScript
function

This removes a whitespace
from the beginning and end of
a string

.val() jQuery
method

This returns the value of the
first matched element or sets
the value of every matched
element

Getting ready
Let's build a page to add items to controls at runtime:



1. In this recipe, let's create a web page with different types of
controls to which items will be added at runtime. We will also
provide a textbox field where the user can enter the items that
need to be added.

Let's say the user needs to add more than one item to the
controls. This can be done by keying in the items separated by
comma, as shown in the following screenshot:



2. When you click on the Add Items button, the new items are
reflected in the controls, as shown in the following screenshot:

3. Let's get started by creating a new ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe5 (or any other suitable name).

4. Create a Scripts folder in the project and add the jQuery library
to this folder.

5. Create a new web form and include the jQuery library in the
form.

6. Drag and drop the required controls on the form to create the
following markup on the page:



<div> 

  <asp:Label ID="lblDescription" 

runat="server" Text="Key in the items to add 

in the text field below. To add more than one 

item, separate by comma."></asp:Label> 

  <br /><br /> 

  <asp:TextBox ID="txtAddItem" runat="server">

</asp:TextBox> 

  <asp:Button ID="btnAdd" runat="server" 

Text="Add Items"  

    /> 

  <br /> 

  <p class="sectionHeader">ListBox control</p> 

  <asp:ListBox ID="lstBox" runat="server" 

Width="200px"> 

    <asp:ListItem Text="First Item" 

Value="First Item"></asp:ListItem> 

  </asp:ListBox> 

  <br /> 

  <p class="sectionHeader">DropDownList 

control</p> 

  <asp:DropDownList ID="ddlList" 

runat="server" Width="200px"> 

    <asp:ListItem Text="First Item" 

Value="First Item"></asp:ListItem> 

  </asp:DropDownList> 

  <br /> 

  <p class="sectionHeader">BulletedList 

control</p> 

  <asp:BulletedList ID="lstList" 

runat="server"> 

    <asp:ListItem Text="First Item" 

Value="First Item"></asp:ListItem> 

  </asp:BulletedList> 

</div>

7. Add some styling to the section headers:
.sectionHeader{ 

  font-size:20px; 

  font-variant:small-caps; 

  font-weight:700; 

}

How to do it…



Add the following jQuery code to a <script> block on the form:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("#<%=txtAddItem.ClientID%>").focus(); 

  $("#<%=btnAdd.ClientID%>").click(function(evt) { 

    evt.preventDefault(); 

    var addItemText = $("#

<%=txtAddItem.ClientID%>").val().trim(); 

    if (addItemText != "") { 

      var arrString = addItemText.split(","); 

      $("#<%=lstBox.ClientID%>").prepend( 

        $.map(arrString, function(v) { 

          return $("<option value=" + v.trim() + 

">" + v.trim() + "</option>"); 

        })); 

      $("#<%=ddlList.ClientID%>").append( 

        $.map(arrString, function(v) { 

          return $("

<option>").val(v.trim()).text(v.trim()); 

        })); 

      $("#<%=lstList.ClientID%>").append( 

        $.map(arrString, function(v) { 

          return $("<li>" + v.trim() + "</li>"); 

        })); 

    } 

    $("#

<%=txtAddItem.ClientID%>").val("").focus(); 

  }); 

}); 

</script>

How it works…
Following are the steps to add items to controls at runtime:

1. On loading the page in the browser, the cursor is focused in the
text field by using the .focus() function:

$("#<%=txtAddItem.ClientID%>").focus();

2. An event handler is attached to the click event of the Add
Items button:



$("#<%=btnAdd.ClientID%>").click(function 

(evt) {…});

3. If you click on the preceding button, the first task is to prevent
posting of the page to the server:

evt.preventDefault();

4. Next, retrieve the content of the text field and trim it to remove
whitespaces:

var addItemText = $("#

<%=txtAddItem.ClientID%>").val().trim();

5. Check whether the content of the preceding field is empty:
if (addItemText != "")

If it is not empty, build an array from the entered text by splitting
the string using commas as delimiters:

var arrString = addItemText.split(",");

Note
If there are no commas in the string, the array will consist of
a single element.

6. Now, use the .map() function to transform this array into a list of
<option> elements such that both the text and value of the
<option> element are equal to the array element at that index.

7. Prepend this list of option elements to the ListBox control, that
is, the new elements will appear as the starting elements inside
the ListBox control:

$("#

<%=lstBox.ClientID%>").prepend($.map(arrString

, function (v) { 



  return $("<option value=" + v.trim() + ">" + 

v.trim() + "</option>"); 

}));

8. The same list of option elements can also be appended to the
DropDownList control. When the .append() function is used, the
new items will appear at the end of the list:

$("#

<%=ddlList.ClientID%>").append($.map(arrString

, function (v) { 

  return $("

<option>").val(v.trim()).text(v.trim()); 

}));

9. To append items to the BulletedList control, we use the .map()
function to build a list of <li> elements since, at runtime, a
BulletedList control renders each ListItem control as an <li>
element. So, the items are added as follows:

$("#

<%=lstList.ClientID%>").append($.map(arrString

, function(v){ 

  return $("<li>" + v.trim() + "</li>"); 

}));

10. Lastly, after adding the elements to the preceding controls, clear
the text field and focus the cursor on the field so that it is ready
to take in the next set of inputs:

$("#

<%=txtAddItem.ClientID%>").val("").focus();

See also
The Adding / removing DOM elements recipe



Chapter 5. Visual Effects in
ASP.NET Sites
This chapter explores the various visual effects and animations that
can be applied to ASP.NET controls using jQuery. The following
recipes will be covered in this chapter:

Animating the Menu control
Animating a Label control to create a digital clock
Animating the alt text of the AdRotator control
Animating images in the TreeView control
Creating scrolling text in a Panel control
Creating a vertical accordion menu using Panel controls
Showing/hiding the GridView control with the explode effect

Introduction
jQuery has simplified the adding of attractive visual effects on web
pages. The library provides many supporting methods used to show,
hide, fade, slide, toggle, and other custom animations. Let's briefly
run through these methods:

Showing and hiding elements:

jQuery method Description

.show() This displays the matched elements

.hide() This hides the matched elements



jQuery method Description

.toggle() This displays or hides the matched elements

Fading elements:

jQuery
method Description

.fadeIn() This animates the opacity of the matched
elements by increasing them gradually until they
reaches a value of 1, that is, they become
opaque.

.fadeOut() This animates the opacity of the matched
elements by decreasing them gradually until
they reaches a value of 0, that is, they become
transparent.

.fadeTo() This animates the opacity of the matched
elements to the specified value.

.fadeToggle() This animates the opacity of the matched
elements to hide or display them.



Sliding elements:

jQuery
method Description

.slideUp() This hides elements with an upward slide
motion.

.slideDown() This displays elements with a download slide
motion.

.slideToggle() This hides or displays the matched elements
with a sliding motion.

Custom effects:

jQuery
method Description

.animate() This performs a custom animation on the specified
CSS properties. The properties that can be
animated are mostly numeric CSS properties, such
as the font size, width, height, opacity, top, left,
right, and so on.



All the preceding supporting methods allow you to specify the
duration of the animation in milliseconds. The default duration for all
animations is 400 ms. jQuery also provides keywords, such as slow
(600 ms) and fast (200 ms) to specify the duration. A larger value for
the duration indicates a slower animation as compared to a smaller
value.

Stopping animations:

jQuery
method Description

.stop() This stops all running animations

.finish() This stops the running animations, removes queued
animations, and completes the animations on the
matched elements



Animating the Menu control
The ASP.NET Menu control enables quick building of menus on
websites. This recipe demonstrates how to add text animations, such
as a blink effect and change of font color of a menu item on
mouseover. The constructs used in this example are summarized in
the following table:

Construct Type Description

$(".class") jQuery
selector

This matches all elements with the specified
CSS class.

$("html_tag") jQuery
selector

This selects all elements with the specified
HTML tag.

$(this) jQuery
object

This refers to the current jQuery object.

.css() jQuery
method

This gets the style property for the first
matched element or sets the style property
for every matched element.

.fadeIn() jQuery
method

This animates the opacity of the matched
element by increasing it gradually until it
reaches a value of 1, that is, it becomes
opaque.



Construct Type Description

.fadeOut() jQuery
method

This animates the opacity of the matched
element by decreasing it gradually until it
reaches a value of 0, that is, it becomes
transparent.

mouseout jQuery
event

This is fired when the mouse pointer leaves
a control. It corresponds to the JavaScript
mouseout event.

mouseover jQuery
event

This is fired when the mouse pointer enters
a control. It corresponds to the JavaScript
mouseover event.

.on() jQuery
event
binder

This attaches an event handler for one or
more events to the matched elements.

Getting ready
Follow these steps to create a Menu to which animation effects will
be applied:

1. Let's create a web page with a horizontal menu, as shown in the
following screenshot. By moving the mouse pointer on any main
menu item, the font color changes and the text blinks once.



Similarly, by moving the mouse pointer on any submenu item,
the font color changes and the text blinks:

The original font color is restored by moving the mouse pointer
out of the main menu or submenu item.

2. To build this web page, create a new ASP.NET Web
Application project in Visual Studio using the Empty template
and name it Recipe1 (or any other suitable name).

3. Add the jQuery library to the Scripts folder.
4. Create a new web form and include the jQuery library in the

form.
5. Go to Toolbox | Navigation, and drag and drop a Menu control

on the form.
6. In the Properties window of the Menu control, set the Layout |

Orientation property to Horizontal, as shown here:



7. In the Design mode, move the mouse pointer on the Menu
control until a small arrow icon appears on the top-right corner
of the control. Click on the arrow to open the Menu Tasks
window, as shown here:

8. Click on the Edit Menu Items link in the preceding Menu Tasks
window to open the Menu Item Editor window. Create the root
and child menu items, as shown in the following screenshot. You
will need to update the ImageUrl, Text, and Value properties of
the main menu (root) items, for example, Home, User



Accounts, Reports, and Settings. For the submenu items, you
will need to update just the Text and Value properties:

9. Add an images folder to the project by right-clicking on the
project in the Solution Explorer tab and navigating to Add |
New Folder. Include the icons for the main menu items.

10. The final markup of the form is as follows:
<div id="container"> 

  <asp:Menu ID="Menu1" runat="server" 

Orientation="Horizontal"> 

    <Items> 

      <asp:MenuItem Text="Home" Value="Home" 

ImageUrl="~/images/home.png"></asp:MenuItem> 

      <asp:MenuItem Text="User Accounts" 

Value="User Accounts" 

ImageUrl="~/images/accounts.png"> 

        <asp:MenuItem Text="Create Account" 

Value="Create Account"></asp:MenuItem> 

        <asp:MenuItem Text="Edit / View 

Accounts" Value="Edit / View Accounts">

</asp:MenuItem> 



        <asp:MenuItem Text="Monitor Account" 

Value="Monitor Account"></asp:MenuItem> 

      </asp:MenuItem> 

      <asp:MenuItem Text="Reports" 

Value="Reports" 

ImageUrl="~/images/reports.png"> 

        <asp:MenuItem Text="Account Usage" 

Value="Account Usage"></asp:MenuItem> 

        <asp:MenuItem Text="Activity Log" 

Value="Activity Log"></asp:MenuItem> 

        <asp:MenuItem Text="Account Specific" 

Value="Account Specific"></asp:MenuItem> 

      </asp:MenuItem> 

      <asp:MenuItem Text="Settings" 

Value="Settings" 

ImageUrl="~/images/settings.png"> 

        <asp:MenuItem Text="Update Profile" 

Value="Update Profile"></asp:MenuItem> 

        <asp:MenuItem Text="Change Password" 

Value="Change Password"></asp:MenuItem> 

      </asp:MenuItem> 

    </Items> 

    <StaticMenuItemStyle 

HorizontalPadding="35px" /> 

  </asp:Menu> 

</div>

11. Note that in the preceding markup, the Menu control is included
in a div container. Apply the following style to this div container:

#container { 

  background-color:lightgray; 

  width:100%; 

}

This will give a background color to the entire Menu control and
keep its width at 100% of the page width.

12. At runtime, the Menu control renders the level1 CSS class for the
main menu items and level2 for the submenu items. Hence,
apply the following styles to these items:

#Menu1 .level1{ 

  padding:5px; 

  font-variant:small-caps; 



  color:black; 

  font-size:20px; 

  font-weight:700; 

  font-family:'Times New Roman', Times, serif; 

} 

#Menu1 .level2{ 

  background-color:aquamarine; 

  color:green; 

  padding:5px; 

}

13. To create spacing between the image and the text in the main
menu items, add the following style to the page:

#Menu1 img{ 

  padding-right:5px; 

}

How to do it…
Add the following jQuery code to a script block on the page:

<script type="text/javascript"> 

  $(document).ready(function() { 

    $(".level1 a, .level2 a").on("mouseover", 

function() { 

      $(this).css("color", "red"); 

      $(this).fadeOut("fast").fadeIn("fast"); 

    }); 

    $(".level1 a").on("mouseout", function() { 

      $(this).css("color", "black"); 

    }); 

    $(".level2 a").on("mouseout", function() { 

      $(this).css("color", "green"); 

    }); 

  }); 

</script>

How it works…
The Menu animation works in the following manner:



1. Save the page using Ctrl + S and run it using F5. This will
launch the menu on the web page.

2. When you move the mouse over any main menu or submenu
item, the following corresponding event handler will be
executed:

$(".level1 a, .level2 a").on("mouseover", 

function () {…});

The preceding selector attaches the event handler of the
mouseover event on both the level1 and level2 hyperlinks.

3. In the preceding event handler, firstly, the font color is changed
to red by updating the css property as follows:

$(this).css("color", "red");

Secondly, a blink effect is added to the text by fading it out
completely so that it is hidden, and then, the control is gradually
made visible by fading in as follows:

$(this).fadeOut("fast").fadeIn("fast");

Thus, the fading out and fading in effects are chained to give a
blink effect to the text. Both the fadeOut() and fadeIn() methods
are called with a fast duration, 200 ms.

4. When the mouse pointer is moved out of a main menu or
submenu item, the corresponding mouseout event handler is
executed. This event handler will restore the font color to the
original value as follows:

$(".level1 a").on("mouseout", function () { 

  $(this).css("color", "black"); 

}); 

$(".level2 a").on("mouseout", function () { 

  $(this).css("color", "green"); 

});



See also
The Creating a vertical accordion menu using Panel controls recipe



Animating a Label control to
create a digital clock
This recipe uses custom animation effects to create a blinking digital
clock to display the current time in the hh:mm:ss format. The
constructs used in this example are summarized in the following
table:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element using its
ID.

.animate() jQuery
method

This performs a custom
animation on the specified CSS
properties.

Date JavaScript
object

This is an object that stores
date/time information: year,
month, day, hours, minutes, and
seconds.

Date.getHours() JavaScript
function

This returns the number of hours
from 0 to 23.

Date.getMinutes() JavaScript
function

This returns the number of
minutes from 0 to 59.



Construct Type Description

Date.getSeconds() JavaScript
function

This returns the number of
seconds from 0 to 59.

opacity CSS
property

This is the degree of
transparency of the element.

setInterval(function,

delay)

JavaScript
function

This executes a function
repeatedly after the specified
delay in milliseconds.

.slice() JavaScript
function

This extracts part of a string. A
negative number passed as a
parameter to the function
extracts the required number of
characters from the end of the
string.

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text content
of every matched element.

Getting ready
Follow these steps to create a digital clock with jQuery animation:



1. Let's build the digital clock by animating a Label control. The
control will display the current time in the hh:mm:ss format at
any point of time. Once every second, the Label control will be
cleared and the new time will be displayed, giving the clock a
blink effect.

2. To get started, add a new ASP.NET Web Application project in
Visual Studio using the Empty template and name it Recipe2 (or
any other suitable name).

3. Add a Scripts folder to the project and add the jQuery library
files to the folder.

4. Add a new web form to the project. Include the jQuery library in
the Web form.

5. Add a Label control inside a Panel control, as shown in the
following markup:

<asp:Panel ID="pnlContainer" runat="server" 

CssClass="container"> 

  <asp:Label ID="lblTime" runat="server" >

</asp:Label> 

</asp:Panel>

6. Add the following CSS style to the containing Panel control:
.container{ 

  background-color:lightgray; 

  font-size:24px; 

  font-family:'Times New Roman', Times, serif; 

  color:black; 

  border:solid; 

  border-color:darkblue; 



  border-width:1px; 

  width:150px; 

  text-align:center; 

}

How to do it…
Include the following jQuery code in a script block on the page:

<script type="text/javascript"> 

  $(document).ready(function() { 

    setInterval(animateLabel, 1000); 

    function animateLabel() { 

      var time = getCurrentTime(); 

      $("#<%=lblTime.ClientID%>").text(time); 

      $("#<%=lblTime.ClientID%>").animate({ 

        opacity: 0 

      }, 950).animate({ 

        opacity: 1 

      }, 50); 

    } 

    function getCurrentTime() { 

      var dt = new Date(); 

      var dtHour = dt.getHours(); // returns a 

number from 0 to 23 

      var dtMinutes = ("0" + 

dt.getMinutes()).slice(-2); 

      var dtSeconds = ("0" + 

dt.getSeconds()).slice(-2); 

      var strAmPm = ""; 

      if (dtHour >= 12) 

        strAmPm = "PM"; 

      else 

        strAmPm = "AM"; 

      if (dtHour > 12) 

        dtHour -= 12; 

      var time = dtHour + ":" + dtMinutes + ":" + 

dtSeconds + " " + strAmPm; 

      return time; 

    } 

  }); 

</script>

How it works…



The digital clock works as follows:

1. Save and run the page. When the document is ready, the
setInterval JavaScript function calls the animateLabel method
every 1000 ms, that is, once every second:

setInterval(animateLabel, 1000);

2. The animateLabel method gets the current time using the
getCurrentTime method, which we shall see shortly:

var time = getCurrentTime();

3. Next, the text of the Label control is set to the time retrieved in
the preceding step:

$("#<%=lblTime.ClientID%>").text(time);

4. The opacity of the Label control is animated to reach 0 in 950 ms
so that Label is completely invisible at the end of the animation.
The next animation is chained at the end of this animation, and
the opacity of the Label control is increased to 1 in 50 ms so that
the Label control is completely opaque after a blink effect:

$("#<%=lblTime.ClientID%>").animate({ opacity: 

0 }, 950).animate({ opacity: 1 }, 50);

Thus, the 1000 ms interval is broken into two parts, 950 ms and
50 ms.

Note
The opacity of an element is the degree of transparency of
that element. Opacity can take any value from 0 to 1.

When the opacity is 1, the element is opaque.

When the opacity is 0, the element is transparent, that is,
invisible.



When the opacity is > 0 and < 1, it is translucent, that is, its
background is visible.

5. Next, let's take a look at the getCurrentTime method that returns
the current time in the hh:mm:ss format. This method first
creates a Date object:

var dt = new Date();

Next, get the hours from the date object as an integer value
from 0 to 23:

var dtHour = dt.getHours();

Get the minutes from the date object. The minutes can be a
single digit so pad it with a zero in front and extract the last two
characters using slice as follows:

var dtMinutes = ("0" + 

dt.getMinutes()).slice(-2);

Get the seconds from the date object. The seconds can also be
a single digit so pad it with a zero in front and extract the last
two characters using slice as follows:

var dtSeconds = ("0" + 

dt.getSeconds()).slice(-2);

6. Let a strAmPm variable store AM or PM as required. Initialize this
variable to an empty string:

var strAmPm = "";

If the number of hours is more than or equal to 12, set strAMPM to
PM, else set it to AM:



if (dtHour >= 12)  

  strAmPm = "PM"; 

else 

  strAmPm = "AM";

7. Also, display the hours from 0 to 12 instead of 0 to 23 as
follows:

if (dtHour > 12) 

  dtHour -= 12;

Now, build a string formatted as hours:minutes:seconds with the
values computed earlier. Return the time string

var time = dtHour + ":" + dtMinutes + ":" + 

dtSeconds + " " + strAmPm; 

return time;

See also
The Creating scrolling text in a Panel control recipe



Animating the alt text of the
AdRotator control
The AdRotator control is used to display advertisement banners on
web pages. The control loads a new banner each time the page is
refreshed. In this demonstration, let's enhance the AdRotator control
to display the alt text of an ad banner with the sliding animation. The
constructs used in this example are as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element using its ID

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag

.addClass() jQuery
method

This adds the specified CSS class to
each matched element

.animate() jQuery
method

This performs a custom animation on
the specified CSS properties

.css() jQuery
method

This gets the CSS property of the
first matched element or sets one or
more CSS properties for every
matched element



Construct Type Description

event.pageX jQuery
event
property

This returns the mouse position
relative to the left edge of the
document

event.pageY jQuery
event
property

This returns the mouse position
relative to the top edge of the
document

.hide() jQuery
method

This hides the matched elements

.hover() jQuery
event
binder

This binds event handlers for the
mouseover and mouseout events

left CSS
property

This is the position of the left edge of
the element

opacity CSS
property

This is the degree of transparency of
the element

.prop(propertyName)

or

.prop(propertyName,

value)

jQuery
method

This returns the value of the
specified property for the first
matched element or sets the value of
the specified property for all matched
elements



Construct Type Description

.slideDown() jQuery
method

This displays elements with a
download slide motion

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text content of
every matched element

top CSS
property

This is the position of the top edge of
the element

Getting ready
Follow these steps for building a web page with an AdRotator:

1. We will create a web page with an AdRotator control that
displays ad banners from an advertisement XML file. The alt text
for each banner is also saved in the XML file. At runtime, when
the mouse pointer is moved on the banner, its opacity reduces,
and the alt text is displayed in a sliding panel, as shown in the
following screenshot:



When the page is refreshed, the control loads another ad
banner from the XML file. The same effect can be seen on the
updated banner, as shown here:



2. To get started, create a new ASP.NET Web Application in
Visual Studio using the Empty template and name it Recipe3 (or
any other suitable name).

3. Include the jQuery library files in a Scripts folder in the project.
4. Add a new web form to the project, and include the jQuery

library in the form.
5. Go to Toolbox | Standard, and drag and drop an AdRotator

control on the form. Also, add a Panel control to the form below
the AdRotator control. This panel will be used to display the alt
text on the ad banner.

6. In the Solution Explorer tab, right-click on the project, and go
to Add | Add ASP.NET Folder and select App_Data folder. This
will add the App_Data folder to the project if it does not already
exist.

7. Right-click on the App_Data folder, and go to Add | XML File. In
the dialog box, key in AdsFile.xml. This XML file will be used to
store the advertisement data that is to be displayed in the
AdRotator control.



8. Add the following content to the XML file. Note that the root
node is Advertisements and the details of each ad are saved in
the Ad node:

<Advertisements> 

  <Ad> 

    <ImageUrl>~/images/packtlib-logo-

dark.png</ImageUrl> 

    <height>56</height> 

    <width>115</width> 

    

<NavigateUrl>https://www.packtpub.com/packtlib

</NavigateUrl> 

    <AlternateText>Access books and videos 

from Packt Library.</AlternateText> 

    <Impressions>80</Impressions> 

    <Keyword>Packt</Keyword> 

  </Ad> 

  <Ad> 

    

<ImageUrl>~/images/learning_jquery.jpg</ImageU

rl> 

    <height>92</height> 

    <width>115</width> 

    <NavigateUrl>https://www.packtpub.com/web-

development/learning-jquery-fourth- 

edition</NavigateUrl> 

    <AlternateText>Learning jQuery, Fourth 

Edition.</AlternateText> 

    <Impressions>80</Impressions> 

    <Keyword>Packt</Keyword> 

  </Ad> 

</Advertisements>

Each child node within an Ad node offers a unique functionality,
which is summarized as follows:

Node Description

ImageUrl This is the URL of the image to be displayed.



Node Description

Height This is the height of the image in pixels.

Width This is the width of the image in pixels.

NavigateUrl This is the URL of the page to be loaded when
you click on the ad banner.

AlternateText This is the text that is displayed when the image
is not available.

Impressions This is the likelihood of the image being
displayed that is expressed as a number.

Keyword This is the category of the image. This field can
be used to filter specific ads.

9. Set the AdvertisementFile property of the AdRotator control to
the preceding file. So, the markup of the form is as follows:

<asp:AdRotator ID="AdRotator1" 

AdvertisementFile="~/App_Data/AdsFile.xml" 

runat="server" /> 

<asp:Panel ID="pnlDescription" runat="server">

</asp:Panel>

10. Add the following CSS class to the page in the head element.
This style will be applied to the Panel control when we display
the alt text of the banner:



<style type="text/css"> 

  .altTextStyle { 

    background-color:lightblue; 

    border-color:blue; 

    border-style:solid; 

    border-width:1px; 

    position:absolute; 

    color:indigo; 

    padding:5px; 

  } 

</style>

11. Add a new images folder to the project, and add the required ad
banners to this folder.

How to do it…
Include the following jQuery code in a script block on the page:

<script type="text/javascript"> 

  $(document).ready(onReady); 

  function onReady() { 

    $("#

<%=pnlDescription.ClientID%>").addClass("altTextSt

yle").hide(); 

    $("#<%=AdRotator1.ClientID%>").hover( 

      function(evt) { 

        var altText = $("#<%=AdRotator1.ClientID%> 

img").prop("alt"); 

        $("#

<%=pnlDescription.ClientID%>").text(altText).css("

left", evt.pageX).css("top", evt.pageY); 

        $("#

<%=pnlDescription.ClientID%>").slideDown("slow"); 

        $("#<%=AdRotator1.ClientID%> 

img").animate({ 

          opacity: 0.5 

        }, "slow"); 

      }, 

      function() { 

        $("#<%=pnlDescription.ClientID%>").hide(); 

        $("#<%=AdRotator1.ClientID%> 

img").animate({ 

          opacity: 1 



        }, "slow"); 

      }); 

  } 

</script>

How it works…
The AdRotator works as follows:

1. When the page is launched in the browser, the onReady function
is called when the document is ready:

$(document).ready(onReady);

2. In the onReady function, the altTextStyle CSS class is added to
the Panel control and the control is then hidden:

$("#

<%=pnlDescription.ClientID%>").addClass("altTe

xtStyle").hide();

3. The hover event binder is used to attach event handlers for the
mouseover and mouseout events as follows:

$("#

<%=AdRotator1.ClientID%>").hover(function()

{...}, function(){...});

Here, the first function is the handler for the mouseover event
while the second is the handler for the mouseout event.

4. At runtime, the AdRotator control is rendered as an <img>
element enclosed within an <a> element, as shown in the
following figure. To view the HTML source of the page, right-
click on the browser window, and select View Source:



Hence, the event handler for mouseover can retrieve the alt text
property of the banner from the rendered image as follows:

var altText = $("#<%=AdRotator1.ClientID%> 

img").prop("alt");

5. The text of the Panel control is set to the preceding text. The
location of the mouse is retrieved using the event.pageX and
event.pageY properties. The left and top locations of the Panel
control can now be set to these coordinates so that the Panel
hovers over the mouse pointer:

$("#

<%=pnlDescription.ClientID%>").text(altText).c

ss("left", evt.pageX).css("top", evt.pageY);

Now that the text and position of the Panel control are initialized,
it is animated using the slideDown function with the slow
duration:

$("#

<%=pnlDescription.ClientID%>").slideDown("slow

");

The ad banner is also animated to reduce its opacity to 50% at a
slow speed:

$("#<%=AdRotator1.ClientID%> img").animate({ 

opacity: 0.5 }, "slow");

6. The mouseout event handler accomplishes two tasks. Firstly, the
alt text Panel is hidden from the view as follows:

$("#<%=pnlDescription.ClientID%>").hide();

Secondly, the banner is restored to its complete visibility by
increasing the opacity to 1 at a slow speed:

$("#<%=AdRotator1.ClientID%> img").animate({ 

opacity: 1 }, "slow");



There's more…
The AdRotator control displays a new ad banner only on refreshing
the page. To refresh the AdRotator control automatically after regular
intervals, we can place the control in an UpdatePanel control and use
AJAX to refresh it. This can be done as follows:

1. Drag and drop a ScriptManager control and an UpdatePanel
control by navigating to Toolbox | AJAX Extensions.

2. To refresh the ad banner at regular intervals, we also need a
Timer control. Hence, drag and drop a Timer control by
navigating to Toolbox | AJAX Extensions.

3. In the Properties window, as shown in the following screenshot,
set the Interval property of the timer to 5000 ms. This will cause
the Timer control to tick every 5 seconds:

4. Now, open the Properties window of the UpdatePanel control,
and expand the Triggers property, as shown here:



In the UpdatePanelTrigger Collection Editor window that is
launched, click on the Add button to add an AsyncPostBack
trigger, and set the ControlID property to Timer1 and
EventName to Tick, as shown in the following screenshot. Click
on OK to close the window:



5. Place the AdRotator and Panel controls in the ContentTemplate
control of the UpdatePanel control.

6. After every AJAX refresh of the UpdatePanel control, the client
script code is rewritten, and the jQuery code that we wrote to
animate the alt text is lost. Hence, we need to rewrite our jQuery
code on the page using the System.Application.add_load
method as follows:

<script type="text/javascript"> 

  Sys.Application.add_load(onReady); 

</script>

The preceding script is also included in the ContentTemplate
control of the UpdatePanel control.

7. Thus, the form markup will change to the following code:
<asp:ScriptManager ID="ScriptManager1" 

runat="server"></asp:ScriptManager> 

<asp:Timer ID="Timer1" runat="server" 



Interval="5000"></asp:Timer> 

<asp:UpdatePanel ID="UpdatePanel1" 

runat="server"> 

  <Triggers> 

    <asp:AsyncPostBackTrigger 

ControlID="Timer1" EventName="Tick" /> 

  </Triggers> 

  <ContentTemplate> 

    <script type="text/javascript"> 

      Sys.Application.add_load(onReady); 

    </script> 

    <asp:AdRotator ID="AdRotator1" 

AdvertisementFile="~/App_Data/AdsFile.xml" 

runat="server" /> 

    <asp:Panel ID="pnlDescription" 

runat="server"></asp:Panel> 

  </ContentTemplate> 

</asp:UpdatePanel>

See also
The Animating images in the TreeView control recipe



Animating images in the
TreeView control
A TreeView control enables you to display data in a hierarchical
format. Let's apply animation to enlarge and shrink images in the
nodes of a TreeView control. We will also take a look at the
mechanism of easing using the jQuery UI library. The constructs
used in this example are as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element using its ID.

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

$(this) jQuery
object

This refers to the current jQuery object.

.animate() jQuery
method

This performs a custom animation on
the specified CSS properties.

[attr$="value"] jQuery
selector

This selects an element with the
specified attribute ending with the value
string.



Construct Type Description

.find() jQuery
method

This finds all elements that match the
filter.

height CSS
property

This is the height of the element.

mouseout jQuery
event

This is fired when the mouse pointer
leaves a control. It corresponds to the
JavaScript mouseout event.

mouseover jQuery
event

This is fired when the mouse pointer
enters a control. It corresponds to the
JavaScript mouseover event.

.on() jQuery
event
binder

This attaches an event handler for one
or more events to the matched
elements.

.stop() jQuery
method

This stops all running animations.

width CSS
property

This is the width of the element.



Getting ready
Follow these steps to setup a TreeView control on a web page:

1. Let's create a web page to display the list of employees (with
their profile photos) in various departments of a company in a
tree structure, as shown in the following screenshot:

To zoom the profile photo of any particular employee, we just
need to move the mouse pointer over the photo, as shown in the
following screenshot:



By moving the mouse pointer out of the photo, it shrinks back to
the original thumbnail size.

2. Let's get started by creating an ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe4 (or any other suitable name).

3. Add a Scripts folder to the project, and add the jQuery library
files to this folder.

4. Add a new web form to the project, and include the jQuery
library in the form.

5. Drag and drop a TreeView control on the form by navigating to
Toolbox | Navigation.

6. In the Design mode, move the mouse pointer over the TreeView
control until a small arrow icon appears in the top-right corner.
Click on this arrow to open the TreeView Tasks menu, as
shown in the following figure:



From the TreeView Tasks menu, select the Show Lines
checkbox to display the node connections. Next, click on the
Edit Nodes link to open the TreeView Node Editor dialog box.
Add the parent and child nodes to the control, as shown in the
following screenshot. For the nodes that display department,
update the Text and Value properties. For the nodes that
display employee, update the Text, Value, and ImageUrl
properties. The profile photo of the employee will be displayed
from the ImageUrl property. Click on the OK button after adding
the nodes:



7. This will generate the following markup for the TreeView control:
<asp:TreeView ID="TreeView1" runat="server" 

ShowLines="True"> 

  <Nodes> 

    <asp:TreeNode Text="My Company" 

Value="MyCompany"> 

      <asp:TreeNode Text="Marketing" 

Value="Marketing"> 

        <asp:TreeNode Text="John" 

Value="EMP001" ImageUrl="~/images/user1.png">

</asp:TreeNode> 

        <asp:TreeNode Text="Mary" 

Value="EMP004" ImageUrl="~/images/user4.png">

</asp:TreeNode> 

      </asp:TreeNode> 

      <asp:TreeNode Text="Technology" 

Value="Technology"> 

        <asp:TreeNode Text="Dave" 

Value="EMP003" ImageUrl="~/images/user3.png">

</asp:TreeNode> 

        <asp:TreeNode Text="Alex" 

Value="EMP006" ImageUrl="~/images/user6.png">

</asp:TreeNode> 



      </asp:TreeNode> 

      <asp:TreeNode Text="HR" Value="HR"> 

        <asp:TreeNode Text="Ellen" 

Value="EMP002" ImageUrl="~/images/user2.png">

</asp:TreeNode> 

        <asp:TreeNode Text="Orlando" 

Value="EMP005" ImageUrl="~/images/user5.png">

</asp:TreeNode> 

      </asp:TreeNode> 

    </asp:TreeNode> 

  </Nodes> 

</asp:TreeView>

8. Add an images folder to the project, and add the required profile
photos to the folder.

How to do it…
Include the following jQuery code in a script block on the page:

<script type="text/javascript"> 

$(document).ready(function () { 

  $("#<%=TreeView1.ClientID%> a").on({ 

    mouseover: function () { 

      $(this).find("img[src$='png']").animate({ 

width: "64px", height: "64px" }, "slow", 

"linear"); 

    }, 

    mouseout: function () { 

      

$(this).find("img[src$='png']").stop().animate({ 

width: "24px", height: "24px" }, "slow", 

"linear"); 

    } 

  }); 

}); 

</script>

How it works…
The animation on the TreeView control works as follows:



1. At runtime, the TreeView control generates the <a> elements for
each node of the tree. To zoom the picture of an employee, we
attach event handlers for the mouseover and mouseout events on
the <a> elements inside the TreeView control as follows:

$("#<%=TreeView1.ClientID%> a").on({mouseover: 

function (){…}, mouseout: function () {…} });

2. In the event handler for mouseover, firstly, find the image element
that ends with the .png extension. This is to ensure that expand
(+) and collapse (-) images are not animated. Secondly, a
custom animation is applied to increase the width and height of
the image to 64 px each. The duration of the animation is slow
and the easing is linear:

$(this).find("img[src$='png']").animate({ 

width: "64px", height: "64px" }, "slow", 

"linear");

3. In the event handler for mouseout, find the image element that
ends with the .png extension. Then, stop any existing
animations using the stop method, and apply a custom
animation to reduce the width and height to the original
dimensions, that is, 24 px each. The duration of the animation is
slow and the easing is linear:

$(this).find("img[src$='png']").stop().animate

({ width: "24px", height: "24px" }, "slow", 

"linear");

Note
Instead of linear, swing can also be used. Just update
linear to swing in the mouseover and mouseout event
handlers.

There's more…



Easing is a mechanism of controlling the speed of animation at
different points during the progress of an animation. jQuery provides
two built-in easing methods: linear and swing. To add advanced
effects, the jQuery UI library can be used. jQuery UI is a JavaScript
library that provides many utilities to plug and play on websites. It
provides widgets, such as Tabs, Accordion, Progressbar, Slider, and
so on, and visual effects such as Bounce, Explode, Color Animation,
and so on, among many other features.

In our previous example, let's use jQuery UI's easeOutBounce effect
by following these steps:

1. Download jQuery UI either from http://jqueryui.com/download or
the NuGet package manager. To use the NuGet package
manager, go to Tools | NuGet Package Manager | Manage
NuGet Packages for Solution.

2. This will open up the NuGet Package Manager screen. Search
for jQuery.UI.Effects.Core, and click on the Install button:

This will download jquery.effects.core.js and
jquery.effects.core.min.js to the Scripts folder.

3. Next, search for jQuery.UI.Effects.Bounce, and click on the
Install button:

http://jqueryui.com/download


This will download jquery.effects.bounce.js and
jquery.effects.bounce.min.js to the Scripts folder.

4. Now, include the debug versions of both the preceding libraries
in the web form as follows:

<script src="Scripts/jquery.effects.core.js">

</script> 

<script 

src="Scripts/jquery.effects.bounce.js">

</script>

5. In the jQuery code written earlier, update the easing from
linear/swing to easeOutBounce, as shown here.

For the mouseover event, run the following code:

$(this).find("img[src$='png']").animate({ 

width: "64px", height: "64px" }, "slow", 

"easeOutBounce");

For the mouseout event, run the following code:

$(this).find("img[src$='png']").stop().animate

({ width: "24px", height: "24px" }, "slow", 

"easeOutBounce");



6. Save and run the page to see the bounce effect on the profile
photo when the mouse pointer is moved over it and when the
pointer is moved out of it.

See also
The Animating the alt text of the AdRotator control recipe



Creating scrolling text in a
Panel control
One of the interesting text animations that can be implemented using
jQuery is to create a scrolling text. This animation has many
applications, such as news scrollers, tickers for stock quotes, and so
on. In this demonstration, let's apply this type of animation to the text
content in a Panel control. We will also demonstrate how to loop
animation effects continuously using the callback function parameter
of the .animate() method. The constructs used in this example are
as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element using its ID

.animate() jQuery
method

This performs a custom animation on
the specified CSS properties

.css() jQuery
method

This gets the CSS property of the first
matched element or sets one or more
CSS properties for every matched
element

left CSS
property

This is the position of the left boundary
of an element from the left boundary of
its containing element



Getting ready
Follow these steps to create scrolling text in a Panel control:

1. We will create a web page with a Panel control and some text
content. The text content will be initially positioned toward the
right of the containing panel and will be animated to move
toward the left, as shown in the following two screenshots:

After the text is out of the view, it will restart from the right once
again. This process will be executed in a loop.

2. Let's get started by creating a new ASP.NET Web Application
project in Visual Studio using the Empty template and name it



Recipe5 (or any other suitable name).
3. Add a Scripts folder to the project, and add the jQuery library

files to the folder.
4. Add a new web form and include the jQuery library in the form.
5. Go to Toolbox | Standard, and add two nested Panel controls

to the form as follows. Note that the scrolling text is placed
inside the inner Panel control:

<asp:Panel ID="pnlContainer" runat="server"> 

  <asp:Panel ID="pnlScollingText" 

runat="server"> 

    This is some scrolling text to be 

displayed. 

  </asp:Panel> 

</asp:Panel>

6. Add the following styles to the respective Panel controls:
<style type="text/css"> 

#pnlContainer { 

  color:white; 

  background-color:black; 

  font-family:'Arial Narrow', Arial, sans-

serif; 

  font-size: 20px; 

  font-variant:small-caps; 

  padding:5px; 

  width:500px; 

  height:30px; 

  white-space:nowrap; 

} 

#pnlScollingText{ 

  position:absolute; 

  left:500px; 

} 

</style>

Note that in the styles declared earlier, the width of the outer
Panel control is 500 px. Hence, the left position of the inner
Panel control is initialized to 500 px, that is, the left boundary of
the inner Panel control is 500 px toward the right of the left
boundary of the outer Panel control. In other words, the text is
positioned at the right edge of the outer Panel control.



How to do it…
Add the following jQuery code to a script block on the page:

<script type="text/javascript"> 

$(document).ready(function () { 

  loopAnimation(); 

  function loopAnimation() { 

    $("#

<%=pnlScollingText.ClientID%>").css("left", 

"500px"); 

    $("#<%=pnlScollingText.ClientID%>").animate({ 

left: "-=850px" }, 7000, "linear", loopAnimation); 

  } 

}); 

</script>

How it works…
The scrolling text works as follows:

1. On running the page in the browser, the loopAnimation function
is called:

loopAnimation();

2. In the loopAnimation function, the left position of the inner Panel
control is reset to 500 px. This ensures that the text always
starts scrolling from the right boundary of the outer Panel
control:

$("#

<%=pnlScollingText.ClientID%>").css("left", 

"500px");

3. The inner Panel control is then animated to reduce its left
position gradually to a value equal to (width of the outer Panel
control + width of the scrolling text), that is, (500 px + approx.
350 px): approximately 850 px. This value can be found by trial
and error:



$("#<%=pnlScollingText.ClientID%>").animate({ 

left: "-=850px" }, 7000, "linear", 

loopAnimation);

The duration of the animation is set to 7000 ms: it takes 7
seconds for the text to scroll from right to left. The easing is set
to linear. It is important to note that the loopAnimation function
is passed as a parameter to the callback function value. This
ensures that the animation loops continuously and the function
calls itself at the end of each animation.

See also
The Animating a Label control to create a digital clock recipe



Creating a vertical accordion
menu using Panel controls
This example demonstrates sliding animation with Panel controls.
We will create a vertical accordion menu that allows only one main
menu item to be expanded at a time. The constructs used in this
example are as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element using its
ID.

$(".class") jQuery
selector

This matches all elements with
the specified CSS class.

$(this) jQuery
object

This refers to the current jQuery
object.

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.

event.stopPropagation() jQuery
method

This stops an event from
bubbling up the DOM tree.



Construct Type Description

.find() jQuery
method

This finds all elements that
match the filter.

.hide() jQuery
method

This hides the matched
elements.

.is() jQuery
method

This returns a Boolean value if
the matched element satisfies a
given condition.

.on() jQuery
event
binder

This attaches an event handler
for one or more events to the
matched elements.

.slideDown() jQuery
method

This displays elements with a
download slide motion.

.slideUp() jQuery
method

This hides elements with an
upward slide motion.

:visible jQuery
selector

This selects elements that are
visible, that is, elements with a
width or height > 0.



Getting ready
Follow these steps to create a vertical accordion menu:

1. We will create a web page with the main menu items, as shown
in the following screenshot:

When you click on any main menu item, it expands with a sliding
animation to show its corresponding submenu items, as shown
here:



When you click on any other main menu item, the previously
expanded submenu slides up, that is, it collapses and the new
submenu slides down, that is, it expands.

2. Let's get started by creating a new ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe6 (or any other suitable name).

3. Create a Scripts folder in the project and add the jQuery library
files to the project.

4. Create a new web form and include the jQuery library in the web
form.

5. Add the following markup to the form:
<table id="tblMenu" class="mainmenu"> 

  <tr> 

    <td> 

      <img src="images/home.png" />Home 

      <asp:Panel runat="server" 

CssClass="submenu"> 

        <ul> 

          <li>Configure Dashboard</li> 

          <li>Logout</li> 



        </ul> 

      </asp:Panel> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <img src="images/accounts.png" />User 

Accounts 

      <asp:Panel runat="server" 

CssClass="submenu"> 

        <ul> 

          <li>Create Account</li> 

          <li>Edit / View Accounts</li> 

          <li>Monitor Account</li> 

        </ul> 

      </asp:Panel> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <img src="images/reports.png" />Reports 

      <asp:Panel runat="server" 

CssClass="submenu"> 

        <ul> 

          <li>Account Usage</li> 

          <li>Activity Log</li> 

          <li>Account Specific</li> 

        </ul> 

      </asp:Panel> 

    </td> 

  </tr> 

  <tr> 

    <td> 

      <img src="images/settings.png" 

/>Settings 

      <asp:Panel runat="server" 

CssClass="submenu"> 

        <ul> 

          <li>Update Profile</li> 

          <li>Change Password</li> 

        </ul> 

      </asp:Panel> 

    </td> 

  </tr> 

</table>



6. Create an images folder, and add the required image files for the
main menu items to this folder.

7. To add spacing between the image and the text in the main
menu items, include the following style in the page:

img{ 

  padding-right:5px; 

}

8. Add the following style for the main menu items:
.mainmenu{ 

  cursor:pointer; 

  width:250px; 

  background-color:lightgray; 

  font-variant:small-caps; 

  font-size:20px; 

  font-family:Arial, sans-serif; 

  font-weight:700; 

  padding:0px; 

}

9. Add the following style for the submenu items:
.submenu{ 

  color:blue; 

  background-color:lightblue;       

  padding-top:3px; 

  padding-bottom:2px;      

} 

.submenu ul{ 

  width:100%; 

  padding-left:3px; 

  list-style-type:none; 

}

How to do it…
Include the following jQuery code in a script block on the page:

<script type="text/javascript"> 

$(document).ready(function () { 

  $(".submenu").hide(); 

  $("#tblMenu").on("click", "tr", function () { 



    $(".submenu").slideUp("slow"); 

    var submenuPanel = $(this).find(".submenu"); 

    if (!$(submenuPanel).is(":visible")) 

      $(submenuPanel).slideDown("slow"); 

  }); 

  $(".submenu").on("click", "li", function (evt) { 

    evt.stopPropagation(); 

  }); 

}); 

</script>

How it works…
The vertical accordion menu works as follows:

1. When the page loads in the browser, all submenu panels are
hidden using the CSS selector for the submenu items, as
follows:

$(".submenu").hide();

2. An event handler for a click event is attached to the container
table that holds the main menu items. The target element for the
click event is the table row:

$("#tblMenu").on("click", "tr", function () 

{…});

3. Since only one submenu should be visible at a time, the
preceding event handler will collapse any visible submenu
panels with sliding animation:

$(".submenu").slideUp("slow");

4. The click event then expands the submenu panel whose main
menu item is clicked. To determine the submenu panel that
needs to be shown, use the CSS selector on the current object:

var submenuPanel = $(this).find(".submenu");

5. If the required submenu panel is already visible, nothing needs
to be done. If however, it is not visible, we need to display it
using sliding animation:



if (!$(submenuPanel).is(":visible")) 

  $(submenuPanel).slideDown("slow");

6. The submenu items are actually list items. To prevent the
submenu items from triggering the expand/collapse menu, we
use the .stopPropagation() method on the list items. This will
prevent the event from bubbling up the DOM tree:

$(".submenu").on("click", "li", function (evt) 

{ 

  evt.stopPropagation(); 

});

See also
The Animating the Menu control recipe



Showing/hiding the GridView
control with the explode effect
The jQuery UI library provides many interesting effects that can be
easily applied on ASP.NET sites. We have already seen the bounce
effect when applied to images in an earlier recipe. In this particular
example, we will make use of another effect called explode and apply
it to a GridView control. The constructs used in this example are as
follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element using
its ID.

event.preventDefault() jQuery
method

This prevents the default
action of the event from being
triggered.

explode jQuery UI
effect

This splits an element in the
specified number of pieces
while hiding or showing it.

.hide() jQuery
method

This hides the matched
elements.



Construct Type Description

.is() jQuery
method

This returns a Boolean value
if the matched element
satisfies a given condition.

pieces Property of
the jQuery
UI explode
effect

These are the number of
pieces to be exploded. Its
default value is set to 9.

.show() jQuery
method

This displays the matched
elements.

.val() jQuery
method

This returns the value of the
first matched element or sets
the value of every matched
element.

:visible jQuery
selector

This selects elements that are
visible, that is, elements with
a width or height > 0.

Getting ready
Follow these steps to setup a data driven GridView control on the
form:



1. Let's create a page that consists of a GridView control that
displays the Employee data from the Northwind database, as
shown in the following screenshot:

When you click on the Hide GridView button at the top of the
page, the GridView control is hidden gradually with the explode
effect, as follows:



The animation is applied until the GridView control is completely
hidden, as shown in the following screenshot:

The button now changes to Show GridView. When you click on
the button, the GridView control is gradually made visible using



the same effect.

2. To get started, create a new ASP.NET Web Application project
in Visual Studio using the Empty template and name it Recipe7
(or any other suitable name).

3. Create a Scripts folder in the project and add the jQuery library
files to the folder.

4. Add a new web form to the project and include the jQuery library
in the form.

5. Drag and drop a GridView control on the form by navigating to
Toolbox | Data.

6. In the Design mode, move the mouse pointer over the GridView
control until a small arrow icon appears in the top-right corner.
Click on this arrow to open the GridView Tasks menu, as
shown in the following figure:

7. From the preceding menu, select <New data source…> from
the Choose Data Source drop-down menu. This will open the
Data Source Configuration Wizard, as shown in the following
screenshot. Select SQL, and complete the wizard to connect to
the Northwind database running on MS SQL Server:



When you configure the Select Statement option in the Data
Source Configuration Wizard, choose the Employees table, and
select the EmployeeID, LastName, and FirstName columns:



Note
Note that we are using Windows Authentication for all
database driven examples in this book. Hence in the MS
SQL Server, it is important to give permission to the windows
account to access the Northwind database.

8. To style the GridView control, you can open the GridView Tasks
menu once again, and click on Auto Format. Choose the
required formatting scheme, and click on Apply to format the
GridView control:



9. Also, add a Button control to the form by navigating to Toolbox |
Standard. This button will be used to hide/show the GridView
control as required.

10. Thus, the markup of the form is as follows:
<asp:Button ID="btnShowHide" runat="server" 

Text="Hide GridView" /> 

<br /><br /> 

<asp:GridView ID="GridView1" runat="server" 

AutoGenerateColumns="False" 

DataKeyNames="EmployeeID" 

DataSourceID="SqlDataSource1" 

AllowPaging="True" CellPadding="3" 

GridLines="Vertical" BackColor="White" 

BorderColor="#999999" BorderStyle="None" 

BorderWidth="1px"> 

  <AlternatingRowStyle BackColor="#DCDCDC" /> 

  <Columns> 

    <asp:BoundField DataField="EmployeeID" 

HeaderText="EmployeeID" InsertVisible="False" 

ReadOnly="True" SortExpression="EmployeeID" /> 



    <asp:BoundField DataField="FirstName" 

HeaderText="FirstName" 

SortExpression="FirstName" /> 

    <asp:BoundField DataField="LastName" 

HeaderText="LastName" 

SortExpression="LastName" /> 

  </Columns> 

  <FooterStyle BackColor="#CCCCCC" 

ForeColor="Black" /> 

  <HeaderStyle BackColor="#000084" Font-

Bold="True" ForeColor="White" /> 

  <PagerStyle BackColor="#999999" 

ForeColor="Black" HorizontalAlign="Center" /> 

  <RowStyle BackColor="#EEEEEE" 

ForeColor="Black" /> 

  <SelectedRowStyle BackColor="#008A8C" Font-

Bold="True" ForeColor="White" /> 

  <SortedAscendingCellStyle 

BackColor="#F1F1F1" /> 

  <SortedAscendingHeaderStyle 

BackColor="#0000A9" /> 

  <SortedDescendingCellStyle 

BackColor="#CAC9C9" /> 

  <SortedDescendingHeaderStyle 

BackColor="#000065" /> 

</asp:GridView> 

<asp:SqlDataSource ID="SqlDataSource1" 

runat="server" ConnectionString="<%$ 

ConnectionStrings:NorthwindConnectionString 

%>" SelectCommand="SELECT [FirstName], 

[LastName], [EmployeeID] FROM [Employees]">

</asp:SqlDataSource>

11. To use the explode effect, we need to download the necessary
jQuery UI files by navigating to Tools | NuGet Package
Manager | Manage NuGet Packages for Solution. In the
Nuget Package Manager screen, as shown in the following
screenshot, search for jQuery.UI.Effects.Core, and click on
Install. This will add both the debug and release versions:
jquery.effects.core.js and jquery.effects.core.min.js to the
Scripts folder:



12. Next, search for jQuery.UI.Effects.Explode, and click on
Install. This will add jquery.effects.explode.js and
jquery.effects.explode.min.js to the Scripts folder:

13. Include the debug versions for both jQuery.UI.Effects.Core and
jQuery.UI.Effects.Explode in the Web form as follows:

<script src="Scripts/jquery.effects.core.js">

</script> 

<script 



src="Scripts/jquery.effects.explode.js">

</script>

How to do it…
Include the following jQuery code in a script block on the page:

<script type="text/javascript"> 

  $(document).ready(function () { 

    $("#<%=btnShowHide.ClientID%>").click(function 

(evt) { 

      evt.preventDefault(); 

      if ($("#GridView1").is(":visible")) { 

        $("#GridView1").hide("explode", { pieces: 

100 }, 5000); 

        $("#<%=btnShowHide.ClientID%>").val("Show 

GridView"); 

      }else { 

        $("#GridView1").show("explode", { pieces: 

100 }, 5000); 

        $("#<%=btnShowHide.ClientID%>").val("Hide 

GridView"); 

      } 

    }); 

  }); 

</script>

How it works…
The explode effect on the GridView control works as follows:

1. When the page is launched in the browser, an event handler is
attached to the click event of the Button control as follows:

$("#<%=btnShowHide.ClientID%>").click(function 

(evt) {…});

2. In this event handler, first of all the default behavior of the Button
control is prevented, that is, the page is prevented from being
submitted on the Button click:

evt.preventDefault();



3. Next, we check whether the GridView control is visible or not. If it
is visible, then it is hidden gradually using the explode effect of
jQuery UI. The number of pieces is set to 100 and the duration of
animation is set to 5000 ms; the GridView control will explode
into 100 pieces and gradually disappear in 5 seconds. The Text
property of the Button control is also updated accordingly:

if ($("#GridView1").is(":visible")) { 

  $("#GridView1").hide("explode", { pieces: 

100 }, 5000); 

  $("#<%=btnShowHide.ClientID%>").val("Show 

GridView"); 

}

4. If the GridView control is not visible, it is gradually shown using
the explode effect of jQuery UI. The number of pieces is once
again set to 100 and the duration of animation is set to 5000 ms;
the GridView control is assembled from 100 pieces and made
visible in 5 seconds. The Text property of the Button control is
also updated accordingly:

else { 

  $("#GridView1").show("explode", { pieces: 

100 }, 5000); 

  $("#<%=btnShowHide.ClientID%>").val("Hide 

GridView"); 

}

See also
The Animating images in the TreeView control recipe



Chapter 6. Working with
Graphics in ASP.NET Sites
This chapter explores the use of jQuery for embedding graphics in
ASP.NET websites and MVC. We will cover the following recipes in
this chapter:

Creating a spotlight effect on images
Zooming images on mouseover
Creating an image scroller
Building a photo gallery using z-index property
Building a photo gallery using ImageMap control
Using images to create effects in the Menu control
Creating a 5 star rating control
Previewing image uploads in MVC

Introduction
The Web is all about content and presentation of the content to an
audience. The visual representation and interactivity of content along
with its user friendliness are important factors to be considered when
building websites. The use of graphics in the web content adds to its
visual appeal and enhances the experience of the end user.
Examples of graphics include images, animated gif, flash, charts,
image buttons, and so on.

jQuery eases the process of integrating graphics into web content. It
provides utilities for creating effects and animations on web
elements. Event handlers can be easily attached and client-side
handling improves the performance by preventing a round trip to the
server.

Using jQuery, ASP.NET server controls such as Image, ImageButton,
and ImageMap can be enhanced with effects, animations, and event



handlers. Plain HTML elements, such as the image element can also
be manipulated using jQuery. This approach is useful in MVC
applications since MVC uses HTML elements instead of server
controls.

In this chapter, we will take look at some common uses of jQuery to
work with graphic elements.



Creating a spotlight effect on
images
Creating a spotlight on a focused item, such as text or any graphic
element on a web page, is often required to draw attention to that
item. In this recipe, let's see how such an effect can be created on a
collection of images. The constructs used in this example are
summarized in the following table:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on its ID

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag

$(this) jQuery
object

This refers to the current jQuery object

.addClass() jQuery
method

This adds the specified CSS class to
each matched element

.css() jQuery
method

This gets the style property for the first
matched element or sets the style
property for every matched element



Construct Type Description

.hover() jQuery
event
binder

This binds event handlers for mouseover
and mouseout events

.removeClass() jQuery
method

This removes the specified CSS class
from each matched element

Getting ready
Let's build a web page with images for the spotlight effect:

1. Let's create a web page with a collection of image controls
arranged in a grid format, as shown in the following screenshot:



2. On moving the mouse pointer over any image in the grid, the
focused item receives a spotlight with the remaining items
fading out, as shown in this screenshot:

3. To create this application, launch an ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe1 (or any other suitable name).

4. Add the jQuery library to the project in a Scripts folder. Add
some sample images to an images folder.

5. Add a web form to the project and include the jQuery library in
the form.

6. Add the following markup to the page to create a table with two
rows and three columns. An Image control is added to each table
cell:

<div id="container"> 

  <table> 

    <tr> 

      <td> 

        <asp:Image ID="imgSample1" 

runat="server" ImageUrl="~/images/image1.jpg" 

/> 



      </td> 

      <td> 

        <asp:Image ID="imgSample2" 

runat="server" 

ImageUrl="~/images/image2.jpg"/> 

      </td> 

      <td> 

        <asp:Image ID="imgSample3" 

runat="server" ImageUrl="~/images/image3.jpg" 

/> 

      </td> 

    </tr> 

    <tr> 

      <td> 

        <asp:Image ID="imgSample4" 

runat="server" 

ImageUrl="~/images/image4.jpg"/> 

      </td> 

      <td> 

        <asp:Image ID="imgSample5" 

runat="server" 

ImageUrl="~/images/image5.jpg"/> 

      </td> 

      <td> 

        <asp:Image ID="imgSample6" 

runat="server" 

ImageUrl="~/images/image6.jpg"/> 

      </td> 

    </tr> 

  </table> 

</div>

7. Include the following styles on the page to set the display
dimensions of the images and padding/margins for the table
element:

<style type="text/css"> 

#container img { 

  width: 213px; 

  height: 142px; 

  display: block; 

} 

 

#container table { 

  padding: 1px; 

} 

 



#container td { 

  padding: 0px; 

  margin: 0px; 

} 

 

.highlight { 

  border-color: #000000; 

  border-width: 1px; 

  border-style: solid; 

} 

</style>

The highlight CSS class defined earlier will be used to attach a
border to the focused image.

How to do it…
Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("#container img").hover( 

    function() { 

      $("#container img").css("opacity", "0.2"); 

      $(this).css("opacity", "1"); 

      $(this).addClass("highlight"); 

    }, 

    function() { 

      $("#container img").css("opacity", "1"); 

      $(this).removeClass("highlight"); 

    }); 

}); 

</script>

How it works…
The spotlight effect on images is achieved as follows:

1. Save the page using Ctrl + S and run it using F5. This will
launch the page in the browser window and the images will be
displayed in the grid.



2. The mouseover and mouseout event handlers are tied to the
images using the .hover() method, as follows:

$("#container img").hover(function()

{…},function(){…});

3. On moving the mouse pointer over any image, the mouseover
event handler is triggered. This handler, first of all, fades all
images in the grid by setting their opacity to 0.2:

$("#container img").css("opacity", "0.2");

Only the focused image, that is, the one with the spotlight is
made completely opaque by setting its opacity to 1:

$(this).css("opacity", "1");

A solid border is also applied to the focused image by adding
the highlight CSS class to it:

$(this).addClass("highlight");

4. On moving the mouse pointer outwards from the spotlight, the
mouseout event handler is triggered. This event handler restores
the opacity of all images in the grid to 1:

$("#container img").css("opacity", "1");

It also removes the solid border from the focused image:

$(this).removeClass("highlight");

See also
The Using images to create effects in the Menu control recipe



Zooming images on mouseover
Some applications require zooming or magnification of images at
certain locations. In this recipe, we will zoom an image at the
location where the mouse enters the image. The constructs used in
this example are as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on its
ID.

$(this) jQuery
object

This refers to the current jQuery
object.

.css() jQuery
method

This gets the style property for the
first matched element or sets the
style property for every matched
element.

height CSS
property

This is the height of the element.

left CSS
property

This is the position of the left edge of
the element. For absolutely
positioned elements, it indicates the
position of the left edge with respect
to the parent element.



Construct Type Description

mousemove jQuery
event

This is fired when the mouse pointer
moves inside an element. It
corresponds to the JavaScript
mousemove event.

mouseout jQuery
event

This is fired when the mouse pointer
leaves an element. It corresponds to
the JavaScript mouseout event.

mouseover jQuery
event

This is fired when the mouse pointer
enters an element. It corresponds to
the JavaScript mouseover event.

.on() jQuery
event
binder

This attaches an event handler for
one or more events to the matched
elements.

pageX jQuery
event
property

This returns the position of the
mouse pointer with respect to the left
edge of the document.

pageY jQuery
event
property

This returns the position of the
mouse pointer with respect to the top
edge of the document.



Construct Type Description

.prop(propertyName)

or

.prop(propertyName,

value)

jQuery
method

This returns the value of the
specified property for the first
matched element or sets the value of
the specified property for all matched
elements.

top CSS
property

This is the position of the top edge of
the element. For absolutely
positioned elements, it indicates the
position of the top edge with respect
to the parent element.

width CSS
property

This is the width of the element.

Getting ready
Let's build a page for zooming an image on mouseover:

1. In this example, we will create a page with a single image
control, as shown in the following screenshot:



On moving the mouse over the image, it zooms at the location
where the mouse pointer first entered the image, as shown
here:



Moving the mouse pointer over the image enables you to scroll
the enlarged image in the direction of the mouse.

2. To get started, use the Empty template of the ASP.NET Web
Application project in Visual Studio and name the project
Recipe2 (or any other suitable name).

3. Add the jQuery library to a Scripts folder in the project. Include
a test image in the images folder.

4. Create a web form and include the jQuery library in the form.
5. Add an Image control by navigating to Toolbox | Standard to a

container div element to create the following markup:
<div id="container"> 

  <asp:Image ID="imgSample" 

ImageUrl="~/images/image1.jpg" Width="640" 



Height="480" runat="server" /> 

</div>

6. To set the dimensions of the container div, include the following
CSS on the page:

<style type="" text/css ""> 

#container { 

  width: 640px; 

  height: 480px; 

  overflow: hidden; 

  position: relative; 

} 

 

#imgSample { 

  position: absolute; 

} 

</style>

7. Note that the position of the container div is set to relative
while the position of the Image control is set to absolute. To be
able to move an absolutely positioned child element within a
parent element, the parent element should be relatively
positioned.

The overflow of the container div is set to hidden so that the
enlarged image is retained within it and any overflow is hidden
from the end user. The image can be scrolled around to see the
hidden areas.

How to do it…
Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("#<%=imgSample.ClientID%>").on("mouseover", 

function(evt) { 

    var zoomIndex = 2; 

    var iWidth = $(this).prop("width"); 

    var iHeight = $(this).prop("height"); 

    var newWidth = iWidth * zoomIndex; 



    var newHeight = iHeight * zoomIndex; 

    var posX = evt.pageX; 

    var posY = evt.pageY; 

    $(this).css({ 

      width: newWidth, 

      height: newHeight, 

      left: -posX, 

      top: -posY 

    }); 

  }); 

  $("#<%=imgSample.ClientID%>").on("mousemove", 

function(evt) { 

    var posX = evt.pageX; 

    var posY = evt.pageY; 

    $(this).css({ 

      left: -posX, 

      top: -posY 

    }); 

  }); 

  $("#<%=imgSample.ClientID%>").on("mouseout", 

function() { 

    $(this).css({ 

      width: "640px", 

      height: "480px", 

      left: 0, 

      top: 0 

    }); 

  }); 

}); 

</script>

How it works…
The zooming of the image on mouseover is achieved as follows:

1. The jQuery code attaches event handlers to the image control
for mouseover, mousemove, and mouseout events using the
following code:

$("#<%=imgSample.ClientID%>").on("mouseover", 

function (evt) {…}); 

$("#<%=imgSample.ClientID%>").on("mousemove", 

function (evt) {…}); 

$("#<%=imgSample.ClientID%>").on("mouseout", 

function () {…});



2. In the mouseover event handler, the image is enlarged and the
position of the image is shifted so that the image appears to
zoom at the location where the mouse pointer enters the image.
The amount of zoom is determined by the zoomIndex variable, as
follows:

var zoomIndex = 2;

Here, the image is zoomed to twice its original dimensions.

The original dimensions of the image are retrieved using the
.prop() method and the new dimensions are calculated using
the zoomIndex variable:

var iWidth = $(this).prop("width"); 

var iHeight = $(this).prop("height"); 

var newWidth = iWidth * zoomIndex; 

var newHeight = iHeight * zoomIndex;

The x and y coordinates of the mouse pointer are determined
using the pageX and pageY properties of the mouseover event
given by the evt event variable:

var posX = evt.pageX; 

var posY = evt.pageY;

The new dimensions and position of the image are then set
using the css() method. The left and top positions of the image
are altered so that it shifts and appears to zoom at the location
of the mouse pointer. We can use any constant values for this
shift or make use of the posX and posY values, as shown in the
following code:

$(this).css({ 

  width: newWidth, 

  height: newHeight, 

  left: -posX, 

  top: -posY 

});



3. In the mousemove event handler, the enlarged image is scrolled in
the direction of the mouse pointer. This is done by first retrieving
the x and y coordinates of the mouse pointer:

var posX = evt.pageX; 

var posY = evt.pageY;

The left and top position of the image is then updated using the
preceding values in the css() method:

 $(this).css({ 

  left: -posX, 

  top: -posY 

 });

4. In the mouseout event handler, the image is reset to its original
dimension and position using the .css() method:

$(this).css({ 

  width: "640px", 

  height: "480px", 

  left: 0, 

  top:0 

});

Thus, the image is shrunk to its original size and absolutely
positioned, that is, at left equal to 0 and top equal to 0 of the
container div.

Tip
The zoomIndex variable controls the amount of zoom in the
presented code sample. We have used zoomIndex = 2. You can
experiment with different values of zoomIndex in the script.
Alternatively, allow the user to enter the amount of magnification
by providing a DropDownList control or any other suitable control.

See also



The Building a photo gallery using the z-index property recipe



Creating an image scroller
This recipe demonstrates horizontal scrolling of a sequence of
images toward the left or right by animating the left position of the
parent container element. The constructs used in this example are
summarized as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on
its ID.

.animate() jQuery
method

This performs a custom animation
on the specified CSS properties.

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.

event.preventDefault() jQuery
method

This prevents the default action of
the event from being triggered.

left CSS
property

This is the position of the left
edge of the element.



Construct Type Description

.on() jQuery
event
binder

This attaches an event handler to
the matched elements for one or
more events.

z-index CSS
property

This is the z-order of an element.
When elements overlap, the one
with the higher z-order appears
above the one with the lower z-
order.

Getting ready
Let's create a page for the image scroller through the following
steps:

1. Let's get started by creating a new ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe3 (or any other suitable name).

2. Add a Scripts folder to the project and include the jQuery library
in this folder.

3. Add few sample images to an images folder in the project.
4. Add a new web form and include the jQuery library on the form.
5. Include the following markup on the form:

<div id="container"> 

  <asp:ImageButton ID="btnLeftScroll" 

runat="server" ImageUrl="~/images/arrow-left-

icon.png" /> 

  <asp:ImageButton ID="btnRightScroll" 

runat="server" ImageUrl="~/images/arrow-right-

icon.png" /> 

  <table id="tblImages"> 



    <tr> 

      <td> 

        <asp:Image ID="imgSample1" 

runat="server" ImageUrl="~/images/image1.jpg" 

Width="640" Height="425" /> 

      </td> 

      <td> 

        <asp:Image ID="imgSample2" 

runat="server" ImageUrl="~/images/image2.jpg" 

Width="640" Height="427" /> 

      </td> 

      <td> 

        <asp:Image ID="imgSample3" 

runat="server" ImageUrl="~/images/image3.JPG" 

Width="640" Height="360" /> 

      </td> 

      <td> 

        <asp:Image ID="imgSample4" 

runat="server" ImageUrl="~/images/image4.JPG" 

Width="640" Height="427" /> 

      </td> 

      <td> 

        <asp:Image ID="imgSample5" 

runat="server" ImageUrl="~/images/image5.JPG" 

Width="640" Height="427" /> 

      </td> 

      <td> 

        <asp:Image ID="imgSample6" 

runat="server" ImageUrl="~/images/image6.JPG" 

Width="640" Height="427" /> 

      </td> 

      <td> 

        <asp:Image ID="imgSample7" 

runat="server" ImageUrl="~/images/image7.JPG" 

Width="640" Height="427" /> 

      </td> 

    </tr> 

  </table> 

</div>

This will create a container div element consisting of a table
with seven columns and one row. Each table cell contains one
Image control. The images may/may not be of different
dimensions.



Two ImageButton controls are provided for scrolling toward the
left and right, respectively. These ImageButton controls are
superimposed on top of the displayed image using CSS.

6. Apply the following styles to the preceding markup:
<style type="text/css"> 

#container{ 

  position:relative; 

  overflow:hidden; 

  width:640px; 

  height:427px; 

  vertical-align:central; 

  margin:0; 

} 

#tblImages{ 

  position:absolute;  

  padding:0px; 

  margin:0px; 

  border-collapse:collapse; 

} 

#tblImages td{ 

  padding:0px; 

} 

#btnLeftScroll{ 

  position:absolute; 

  left:10px; 

  top:200px; 

  z-index:2; 

  width:48px; 

  height:48px; 

} 

#btnRightScroll{ 

  position:absolute; 

  left:580px; 

  top:200px; 

  z-index:2; 

  width:48px; 

  height:48px; 

} 

</style>

Note



Note that the position of the container div is set to relative
while the position of the table containing the images is set
to absolute so that the table can be moved within the
container div. The position of the left and right buttons is
also set to absolute with a z-index of 2 so that the buttons
appear on top of the displayed image.

7. Thus, the page will appear, as shown in the following
screenshot:

After clicking on the left button, the sequence moves toward the
left, as shown in the following screenshot:



Similarly, after clicking on the right button, the sequence scrolls
to the right, as shown here:



How to do it…
Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

$(document).ready(function() { 

  var containerWidth = 640; 

  var totalImgWidth = 640 * 7; 

  var leftEdgePos = 0; 

  var rightEdgePos = totalImgWidth - 50; 

  $("#<%=btnLeftScroll.ClientID%>").on("click", 

function(evt) { 

    evt.preventDefault(); 

    scrollLeft(); 

  }); 

  $("#<%=btnRightScroll.ClientID%>").on("click", 

function(evt) { 



    evt.preventDefault(); 

    scrollRight(); 

  }); 

 

  function scrollLeft() { 

    if (rightEdgePos > containerWidth) { 

      rightEdgePos -= 200; 

      leftEdgePos -= 200; 

      $("#tblImages").animate({ 

        left: '-=200px' 

      }, 1500, "linear"); 

    } 

  } 

 

  function scrollRight() { 

    if (leftEdgePos < 0) { 

      leftEdgePos += 200; 

      rightEdgePos += 200; 

      $("#tblImages").animate({ 

          left: '+=200px' 

        }, 1500, 

        "linear"); 

    } 

  } 

}); 

</script>

How it works…
The image scroller works as follows:

1. Save the page using Ctrl + S and run it using F5. This will
launch the application in a browser window. On loading, the
page displays the first image in a sequence along with the left
and right arrow buttons. To scroll, click on the respective button.
Note that scrolling stops once the left edge of the first image
coincides with the left edge of the container div when scrolling
toward the right. Similarly, when scrolling toward the left, the
scrolling stops when the right edge of the last image coincides
with the right edge of the container div.

2. The .aspx markup consists of a container div with a fixed width
of 640 px and fixed height of 427 px. Its position is defined as
relative so that the child elements can be absolutely positioned



within it. The overflow is defined as hidden so that at a time, we
can view only 640 px * 427 px window of the child elements.

3. The container div has a child table element with an ID equal to
tblImages. This table contains the images arranged column-
wise. These are the images that we need to scroll. The table is
absolutely positioned so that it's left edge can be animated. At
any time, the user will see only the CONTAINER DIV, that is,
the blue shaded area in the following diagram, and the table will
scroll in the background:

4. In the jQuery script, the container div width is kept constant at
640 px:

var containerWidth = 640;

Since there are seven images, each of 640 px in width, the total
table width can be determined, as follows:

var totalImgWidth = 640 * 7;

The position of the left edge of tblImages is initialized to
coincide with the left edge of the container div:

var leftEdgePos = 0;

The position of the right edge of tblImages is initialized to
coincide with the total table width minus 50 px to prevent the



right edge from scrolling past the right edge of the container div:

var rightEdgePos = totalImgWidth - 50;

5. An event handler for the click event is attached to each
ImageButton control, that is, the left and right buttons. The left
button calls the scrollLeft function while the right button calls
the scrollRight function. Both event handlers call
event.preventDefault() method to prevent the page from
posting back:

$("#<%=btnLeftScroll.ClientID%>").on("click", 

function (evt) { 

  evt.preventDefault(); 

  scrollLeft(); 

}); 

 

$("#<%=btnRightScroll.ClientID%>").on("click", 

function (evt) { 

  evt.preventDefault(); 

  scrollRight(); 

});

6. Let's take a look at what happens in the scrollLeft() function.
First of all, we need to check the position of the right edge of the
scrolling table. If the right edge lies to the right of the right edge
of the container div, we can animate the table and slide it
toward the left. For each click of the left button, we will shift the
table toward the left by 200 px in 1500 ms. The left and right
edges positions are adjusted by 200 px, as shown in the
following code:

function scrollLeft() { 

  if (rightEdgePos > containerWidth) { 

    rightEdgePos -= 200; 

    leftEdgePos -= 200; 

    $("#tblImages").animate({ left: '-=200px' 

}, 1500, "linear"); 

  } 

}

7. Similarly, in the scrollRight function, we check the position of
the left edge of the scrolling table. If the left edge lies to the left



of the left edge of the container div, we can animate the table
and slide it toward the right. For each click of the right button,
we shift the table toward the right by 200 px in 1500 ms. The left
and right edge positions of the table are also adjusted by 200 px
accordingly:

function scrollRight() { 

  if (leftEdgePos < 0) { 

    leftEdgePos += 200; 

    rightEdgePos += 200; 

    $("#tblImages").animate({ left: '+=200px' 

}, 1500, "linear"); 

  } 

}

See also
The Creating a spotlight effect on images recipe



Building a photo gallery using
z-index property
A photo gallery is a common feature on most social media sites.
There are many ways of building these galleries using jQuery. In this
recipe, let's use the z-index CSS property to build one such
application. The following table shows a summary of the constructs
used in this example:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on
its ID.

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

$(this) jQuery
object

This refers to the current jQuery
object.

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.



Construct Type Description

.css() jQuery
method

This gets the style property for
the first matched element or sets
the style property for every
matched element.

.each() jQuery
method

This iterates over the matched
elements and executes a function
for each element.

event.preventDefault

()

jQuery
method

This prevents the default action of
the event from being triggered.

.length jQuery
property

This returns the number of
elements in the jQuery object.

.on() jQuery
event
binder

This attaches an event handler to
the matched elements for one or
more events.

parseInt(string) JavaScript
function

This converts a string into an
integer.



Construct Type Description

z-index CSS
property

This is the z-order of an element.
When elements overlap, the one
with the higher z-order appears
above the one with the lower z-
order.

Getting ready
Follow these steps to build a page with a photo gallery using z-index
property:

1. We aim to create a page that displays one image at a time from
a sequence of images. Navigation in the sequence is possible
by clicking on the previous and next buttons. The images are
displayed in a loop, so clicking on the next button on the last
image displays the first image and clicking on the previous
button on the first image displays the last image:



2. To create this gallery, launch a new ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe4 (or any other suitable name).

3. Create a Scripts folder in the project and add the jQuery library
to the folder. Include some sample images in an images folder.

4. Create a new web form and include the jQuery library on the
form.

5. We will create an HTML <table> element consisting of two rows
and one column. The first row will have six Image controls that
are added to the table cell with id = container. The second row
will have two ImageButton controls for the previous and next
image navigation. Hence, add the following markup to the form:



<table><tr><td id="container"> 

<asp:Image ID="imgSample1" 

ImageUrl="~/images/image1.jpg" runat="server" 

/> 

<asp:Image ID="imgSample2" 

ImageUrl="~/images/image2.jpg" runat="server" 

/> 

<asp:Image ID="imgSample3" 

ImageUrl="~/images/image3.jpg" runat="server" 

/> 

<asp:Image ID="imgSample4" 

ImageUrl="~/images/image4.jpg" runat="server" 

/> 

<asp:Image ID="imgSample5" 

ImageUrl="~/images/image5.jpg" runat="server" 

/> 

<asp:Image ID="imgSample6" 

ImageUrl="~/images/image6.jpg" runat="server" 

/> 

</td></tr> 

<tr><td> 

<asp:ImageButton ID="btnPrevious" 

CssClass="buttonStyle" 

ImageUrl="~/images/backward.ico" 

runat="server" ToolTip="View previous photo" 

/>&nbsp;&nbsp; 

<asp:ImageButton ID="btnNext" 

CssClass="buttonStyle" 

ImageUrl="~/images/forward.ico" runat="server" 

ToolTip="View next photo"/> 

</td></tr> 

</table>

6. Include the following styles on the page in order to set the
dimensions of the elements and their respective positions:

<style type="text/css"> 

  buttonStyle{ 

    width:68px; 

    height:68px; 

  } 

  #container{ 

    position:relative; 

    width:640px; 

    height:425px; 

  } 

  #container img{ 



    position:absolute; 

    top:0px; 

    left:0px; 

  } 

  td{ 

    text-align:center; 

  } 

</style>

Note
Note that the container table cell has its position property
defined as relative. This enables its child elements to be
absolutely positioned. Its dimensions are kept constant and all
images are displayed in the gallery with these dimensions.

How to do it…
Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

$(document).ready(function() { 

  var maxZIndex = $("#container img").length; 

  var tempZIndex = maxZIndex; 

  $("#container img").each(function() { 

    $(this).css("z-index", tempZIndex); 

    tempZIndex--; 

  }); 

  $("#<%=btnPrevious.ClientID%>").on("click", 

    function(evt) { 

      evt.preventDefault(); 

      $("#container img").each(function() { 

        var currZIndex = parseInt($(this).css("z-

index")); 

        if (currZIndex == 1) 

          $(this).css("z-index", maxZIndex); 

        else 

          $(this).css("z-index", currZIndex - 1); 

      }); 

    }); 

  $("#<%=btnNext.ClientID%>").on("click", 



    function(evt) { 

      evt.preventDefault(); 

      $("#container img").each(function() { 

        var currZIndex = parseInt($(this).css("z-

index")); 

        if (currZIndex == maxZIndex) 

          $(this).css("z-index", 1); 

        else 

          $(this).css("z-index", currZIndex + 1); 

      }); 

    }); 

}); 

</script>

How it works…
The photo gallery works as follows:

1. On launching the page in the browser, the gallery displays the
first image in the markup. After clicking on the previous or next
button, it navigates to the required images, as shown in the
following screenshot:



2. In the jQuery code, we assign a z-index construct to each
image, ranging from 1 to the maximum number of images. The
image with the highest z-index at any point in time will be
displayed in the gallery. To do this, first determine the total
number of images:

var maxZIndex = $("#container img").length;

Now assign a z-index to each image element by assigning the
highest index to the first image and then decrementing by 1 for
each element in the loop:

var tempZIndex = maxZIndex; 

$("#container img").each(function () { 



  $(this).css("z-index", tempZIndex); 

  tempZIndex--; 

});

3. An event handler is attached to the previous button for the click
event, as follows:

$("#<%=btnPrevious.ClientID%>").on("click", 

function (evt) {…});

In this event handler, first of all, we prevent the page from
posting back on the button click:

evt.preventDefault();

Then, the z-index of each image element is decreased by 1. If
the z-index of any element has the lowest value, that is, 1, it is
reset to the maximum value. This ensures that the images are
displayed in a loop; when you click on the previous button, the
first image will display the last image:

$("#container img").each(function () { 

  var currZIndex = parseInt($(this).css("z-

index")); 

  if (currZIndex == 1) 

    $(this).css("z-index", maxZIndex); 

  else 

    $(this).css("z-index", currZIndex-1); 

});

4. An event handler is attached to the next button for the click
event, as follows:

$("#<%=btnNext.ClientID%>").on("click", 

function (evt) {…});

In this event handler, the page is first prevented from posting
back:

evt.preventDefault();



The z-index of each image element is incremented by 1. If the
z-index of an element has the maximum value, it is reset to 1.
This ensures that when you click on the next button, the last
image will display the first image:

$("#container img").each(function () { 

  var currZIndex = parseInt($(this).css("z-

index")); 

  if (currZIndex == maxZIndex) 

    $(this).css("z-index", 1); 

  else 

    $(this).css("z-index", currZIndex + 1); 

});

See also
The Building a photo gallery using the ImageMap control recipe



Building a photo gallery using
ImageMap control
Since photo galleries can be built using many different methods, let's
make use of the ASP.NET ImageMap control in this recipe to build a
gallery. The following table lists the summary of constructs used in
this example:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on
its ID.

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

[attribute= "value"] jQuery
selector

This selects an element with the
specified attribute equal to the
"value" string.

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.

event.preventDefault() jQuery
method

This prevents the default action of
the event from being triggered.



Construct Type Description

.hide() jQuery
method

This hides the matched elements.

.hover() jQuery
event
binder

This binds event handlers for
mouseover and mouseout events.

.on() jQuery
event
binder

This attaches an event handler to
the matched elements for one or
more events.

.prop(propertyName) or

.prop(propertyName,

value)

jQuery
method

This returns the value of the
specified property for the first
matched element or sets the
value of the specified property for
all matched elements.

.show() jQuery
method

This displays the matched
elements.

Getting ready
Follow these steps to build a page with an ImageMap control:

1. Create a new ASP.NET Web Application project in Visual
Studio using the Empty template and name it Recipe5 (or any



other suitable name).
2. Add a Scripts folder and include the jQuery library in the folder.
3. Add an images folder to the project. Add some sample images to

the folder.
4. Create a web form and include the jQuery library on the form.
5. Go to Toolbox | Standard, add an ImageMap and two Image

controls to the form. The ImageMap will be used for the display
image in the photo gallery while the Image controls will be used
to display the left and right direction arrows.

6. Define two rectangular hotspots on the ImageMap control with the
dimension 50 * 58, assuming that the image is of the dimension
680 * 425. The position of the two hotspots is shown in the
following image:

This can be done by adding the following markup to the .aspx
page:

<div id="container"> 

  <asp:Image ID="imgPrevious" 

ImageUrl="~/images/Arrows-Back-icon.png" 

runat="server" /> 

  <asp:Image ID="imgNext" 

ImageUrl="~/images/Arrows-Forward-icon.png" 

runat="server" /> 

  <asp:ImageMap ID="imgMap" 

ImageUrl="~/images/image1.jpg" runat="server"> 

    <asp:RectangleHotSpot HotSpotMode="NotSet" 



Left="0" Right="50" Top="212" Bottom="270" 

AlternateText="Previous" /> 

    <asp:RectangleHotSpot HotSpotMode="NotSet" 

Left="630" Right="680" Top="212" Bottom="270" 

AlternateText="Next" /> 

  </asp:ImageMap> 

</div>

7. To set the dimensions and positions of the elements, include the
following styles on the page:

<style type="text/css"> 

#container{ 

  position:relative; 

} 

#imgMap{ 

  width:680px; 

  height:425px; 

  position:absolute; 

  top:0px; 

  left:50px; 

} 

#imgPrevious{ 

  top:212px; 

  left:0px; 

  position:absolute; 

  width:48px; 

  height:48px; 

} 

#imgNext{ 

  top:212px; 

  left:750px; 

  position:absolute; 

  width:48px; 

  height:48px; 

} 

</style>

The container div is relatively positioned while all the other
controls within this div are absolutely positioned.

8. On launching the browser, the page will display the first image in
the gallery, as shown in the following screenshot. On mouseover
on the hotspot on the left, the left direction arrow will appear:



Similarly, on mouseover on the right hotspot, the right direction
arrow will appear, as shown in the following screenshot:



In the next section, we will add the jQuery code that will display
the previous or next image after clicking on the respective
hotspot.

How to do it…
Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

$(document).ready(function() { 

  var imgArr = ["image1.jpg", "image2.jpg", 

"image3.jpg", 

    "image4.jpg", "image5.jpg", "image6.jpg" 

  ]; 

  var minIndex = 0; 

  var maxIndex = imgArr.length - 1; 

  var currIndex = 0; 

  var basePath = "/images/"; 

  $("#<%=imgPrevious.ClientID%>").hide(); 



  $("#<%=imgNext.ClientID%>").hide(); 

  $("map area[title='Previous'").hover( 

    function() { 

      $("#<%=imgPrevious.ClientID%>").show(); 

    }, 

    function() { 

      $("#<%=imgPrevious.ClientID%>").hide(); 

    }); 

  $("map area[title='Next'").hover( 

    function() { 

      $("#<%=imgNext.ClientID%>").show(); 

    }, 

    function() { 

      $("#<%=imgNext.ClientID%>").hide(); 

    }); 

  $("map area[title='Previous'").on("click", 

function(evt) { 

    evt.preventDefault(); 

    if (currIndex == minIndex) 

      currIndex = maxIndex; 

    else 

      currIndex--; 

    var imgPath = basePath + imgArr[currIndex]; 

    $("#<%=imgMap.ClientID%>").prop("src", 

imgPath); 

  }); 

  $("map area[title='Next'").on("click", 

function(evt) { 

    evt.preventDefault(); 

    if (currIndex == maxIndex) 

      currIndex = minIndex; 

    else 

      currIndex++; 

    var imgPath = basePath + imgArr[currIndex]; 

    $("#<%=imgMap.ClientID%>").prop("src", 

imgPath); 

  }); 

}); 

</script>

How it works…
The image gallery works as follows:



1. In the jQuery code, define an array to store the names of all
image files that are required to be displayed in the gallery:

var imgArr = ["image1.jpg", "image2.jpg", 

"image3.jpg", "image4.jpg", "image5.jpg", 

"image6.jpg"];

The minimum and maximum index of this array is then
initialized:

var minIndex = 0; 

var maxIndex = imgArr.length - 1;

The current index, that is, the index of the image that is currently
displayed in the gallery at any point of time, is initialized to 0:

var currIndex = 0;

2. Next, initialize the base path of the folder containing the display
images:

var basePath = "/images/";

3. Hide the left and right arrows initially. These will only be
displayed on mouseover on the respective hotspots:

$("#<%=imgPrevious.ClientID%>").hide(); 

$("#<%=imgNext.ClientID%>").hide();

4. Use the .hover() method to attach the mouseover and mouseout
event handlers on the hotspots. At runtime, the ImageMap control
is rendered as an img element and a map element, as shown in
the following code:

<img id="imgMap" src="images/image1.jpg" 

usemap="#ImageMapimgMap" /> 

<map name="ImageMapimgMap" 

id="ImageMapimgMap"> 

<area shape="rect" coords="0,212,50,270" 

href="" title="Previous" alt="Previous" /> 

<area shape="rect" coords="630,212,680,270" 



href="" title="Next" alt="Next" /> 

</map>

The hotspots can be distinguished using the title attribute.
Thus, the left hotspot can be selected using $("map
area[title='Previous']") and the right hotspot using $("map
area[title='Next']").

Hence, the .hover() method can be used with the left hotspot to
show/hide the left direction arrow, as follows:

$("map area[title='Previous']").hover( 

  function () { 

    $("#<%=imgPrevious.ClientID%>").show(); 

  },  

  function () { 

    $("#<%=imgPrevious.ClientID%>").hide(); 

});

Similarly, it can be used with the right hotspot to show/hide the
right direction arrow, as follows:

$("map area[title='Next']").hover( 

  function () { 

    $("#<%=imgNext.ClientID%>").show(); 

  }, 

  function () { 

    $("#<%=imgNext.ClientID%>").hide(); 

});

In the preceding code, on mouseover, the required arrow image
is displayed and on mouseout, it is hidden.

5. We also attach event handlers for the click event of the
hotspots, as follows:

$("map area[title='Previous'").on("click", 

function (evt) {…}); 

$("map area[title='Next'").on("click", 

function (evt) {…});



6. After clicking on the left hotspot, the previous image is
displayed. In the click event handler for the left hotspot, first of
all, the page is prevented from posting back using the following
code:

evt.preventDefault();

To ensure that the images are displayed in a loop, if the display
image is the first image, its previous image should be the last
image in the array. Hence, the current index is updated, as
follows:

if (currIndex == minIndex) 

  currIndex = maxIndex;

For all the other display images, the current index is simply
decremented by 1:

else 

  currIndex--;

The image path is then built using the base path:

var imgPath = basePath + imgArr[currIndex];

The source property of the image control is then set to the
preceding path:

$("#

<%=imgMap.ClientID%>").prop("src",imgPath);

7. After clicking on the right hotspot, the next image is displayed. In
the click event handler for the right hotspot, first of all, the page
is prevented from posting back using this code:

evt.preventDefault();



If the display image is the last image, its next image should be
the first image in the array in order to ensure that the images are
displayed in a loop. Hence, the current index is updated, as
follows:

if (currIndex == maxIndex) 

  currIndex = minIndex;

For all the other display images, the current index is simply
incremented by 1:

else 

  currIndex++;

The image path is then built using the base path:

var imgPath = basePath + imgArr[currIndex];

The source property of the image control is then set to the
preceding path:

$("#

<%=imgMap.ClientID%>").prop("src",imgPath);

This enables navigation of the images in a loop in the forward or
reverse direction as required.

See also
The Building a photo gallery using the z-index property recipe



Using images to create effects
in the Menu control
In Chapter 5, Visual Effects in ASP.NET Sites, we have seen how
the ASP.NET Menu control can be animated using the fade and
other CSS effects were explored. In this example, let's use images
instead of text for the main menu and submenu items in the Menu
control. These images will be updated on mouseover and mouseout
events. The constructs used in this example are summarized as
follows:

Construct Type Description

$(".class") jQuery
selector

This matches all elements with
the specified CSS class.

$("html_tag") jQuery
selector

This selects all elements with
the specified HTML tag.

$(this) jQuery
object

This refers to the current
jQuery object.

.indexOf

(searchString,

[startIndex])

JavaScript
function

This returns the index of the
first occurrence of the
searchString within the given
string starting at the startIndex
position (optional).



Construct Type Description

mouseout jQuery
event

This is fired when the mouse
pointer leaves a control. It
corresponds to the JavaScript
mouseout event.

mouseover jQuery
event

This is fired when the mouse
pointer enters a control. It
corresponds to the JavaScript
mouseover event.

.on() jQuery
event
binder

This attaches an event handler
to the matched elements for
one or more events.

.prop(propertyName) or

.prop(propertyName,

value)

jQuery
method

This returns the value of the
specified property for the first
matched element or sets the
value of the specified property
for all matched elements.

.replace(subString,

newString)

JavaScript
function

This replaces all occurrences of
subString with newString.

.substring(startIndex,

[endIndex])

JavaScript
function

This returns a substring of a
given string from startIndex to
endIndex or to the end of the
string.



Getting ready
Let's build a page to use images to create the effects in the Menu
control:

1. In this example, let's recreate the menu, as described in
Chapter 5, Visual Effects in ASP.NET Sites in the Animating the
Menu control recipe, but this time, using images instead of text.
Let's start by creating an ASP.NET Web Application project in
Visual Studio using the Empty template and name it Recipe6 (or
any other suitable name).

2. Add the jQuery library to a Scripts folder in the project.
3. Add an images folder and include images for the main menu and

submenu items in this folder. Also, add the mouseover images
for the respective menu items to this folder. The convention that
we will use to name the mouseover images is *_mouseover.png.
For example, if an image is named Home.png, its mouseover
image will be named Home_mouseover.png.

4. Add a new web form and include the jQuery library on the form.
5. Drag and drop a Menu control by navigating to the Toolbox |

Navigation section.
6. Add the following markup to the form:

<div id="container"> 

  <asp:Menu ID="Menu1" runat="server" 

Orientation="Horizontal"> 

    <Items> 

      <asp:MenuItem 

ImageUrl="~/images/Home.png"></asp:MenuItem> 

      <asp:MenuItem 

ImageUrl="~/images/UserAccounts.png"> 

        <asp:MenuItem 

ImageUrl="~/images/UserAccounts_1.png">

</asp:MenuItem> 

        <asp:MenuItem 

ImageUrl="~/images/UserAccounts_2.png">

</asp:MenuItem> 

        <asp:MenuItem 

ImageUrl="~/images/UserAccounts_3.png">

</asp:MenuItem> 

      </asp:MenuItem> 



      <asp:MenuItem 

ImageUrl="~/images/Reports.png"> 

        <asp:MenuItem 

ImageUrl="~/images/Reports_1.png">

</asp:MenuItem> 

        <asp:MenuItem 

ImageUrl="~/images/Reports_2.png">

</asp:MenuItem> 

        <asp:MenuItem 

ImageUrl="~/images/Reports_3.png">

</asp:MenuItem> 

      </asp:MenuItem> 

      <asp:MenuItem 

ImageUrl="~/images/Settings.png"> 

        <asp:MenuItem 

ImageUrl="~/images/Settings_1.png">

</asp:MenuItem> 

        <asp:MenuItem 

ImageUrl="~/images/Settings_2.png">

</asp:MenuItem> 

      </asp:MenuItem> 

    </Items> 

  </asp:Menu> 

</div>

7. The container div area is given a background color using the
following style:

#container{ 

  background-color:lightgray; 

}

8. The ASP.NET engine renders the main menu items with a CSS
class called level1 at runtime. Add the following styles to this
class:

#Menu1 .level1{ 

  padding:0px; 

  margin:0px; 

}

Note



Note that the submenu items are rendered with a CSS class
called level2.

9. Now, we will use jQuery to update the main menu image on
mouseover, as shown in the following screenshot. On mouseout,
the image is restored to the original one.

Similarly, on mouseover on any submenu item, the respective
image is updated, as shown in the following screenshot:

On mouseout, the image is restored to the original one thus
creating the required visual effect on the menu items.



How to do it…
Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

$(document).ready(function() { 

  $(".level1 a img, .level2 a 

img").on("mouseover", function() var imageSource = 

$(this).prop("src"); 

    var pos = imageSource.indexOf("."); 

    var strFileExt = imageSource.substring(pos, 

imageSource.length); imageSource = 

imageSource.replace(strFileExt, "_mouseover" + 

strFileExt); $(this).prop("src", imageSource); 

  }); $(".level1 a img, .level2 a 

img").on("mouseout", function() { 

  var imageSource = $(this).prop("src"); 

  imageSource = imageSource.replace("_mouseover", 

""); 

  $(this).prop("src", imageSource); 

}); 

}); 

</script>

How it works…
The effect on the Menu control works as follows:

1. At runtime, the Menu control renders the main menu items with
the level1 CSS class and submenu items with the level2 CSS
class. Thus, we bind event handlers for the mouseover and
mouseout events for the level1 and level2 hyperlinked images,
as follows:

$(".level1 a img, .level2 a 

img").on("mouseover", function () {…}); 

$(".level1 a img, .level2 a 

img").on("mouseout", function () {…});

2. The mouseover event handler will display the mouseover image
for that menu item. Assuming that when an image is named



image.png, its corresponding mouseover image will be
image_mouseover.png, and we first get the image source:

var imageSource = $(this).prop("src");

Then, determine the file extension of the image:

var pos = imageSource.indexOf("."); 

var strFileExt = imageSource.substring(pos, 

imageSource.length);

Replace the original file extension with the _mouseover string
followed by the respective file extension. For example, if the file
extension is .png, then it is replaced by _mouseover.png in the
image source string:

imageSource = imageSource.replace(strFileExt, 

"_mouseover" + strFileExt);

Now, replace the image source with this updated image source:

$(this).prop("src", imageSource);

3. When the mouse pointer moves out from the image, get the
source of the image using the .prop() method as follows:

var imageSource = $(this).prop("src");

Replace the _mouseover string with an empty string:

imageSource = 

imageSource.replace("_mouseover", "");

Update the image source once again using the prop() method:

$(this).prop("src", imageSource);



See also
The Previewing image uploads in MVC recipe



Creating a 5 star rating control
A 5 star rating control is a useful feature when you need to review an
item, such as a book, movie, product, and so on. In this example,
let's use jQuery to create this application as an ASP.NET User
Control. The constructs used in this example are as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on
its ID.

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

$(this) jQuery
object

This refers to the current jQuery
object.

[attribute$=

"value"]

jQuery
selector

This selects an element with the
specified attribute ending with the
"value" string.

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.



Construct Type Description

.indexOf

(searchString,

[startIndex])

JavaScript
function

This returns the index of the first
occurrence of the searchString
within the given string starting at
the startIndex position (optional).

.length jQuery
property

This returns the number of
elements in the jQuery object.

.nextAll() jQuery
method

This gets all the succeeding
siblings of the matched elements.
A selector can be provided
optionally.

.on() jQuery
event
binder

This attaches an event handler to
the matched elements for one or
more events.

.prevAll() jQuery
method

This gets all the previous siblings
of the matched elements. A
selector can be provided
optionally.

.prop(propertyName)

or

.prop(propertyName,

value)

jQuery
method

This returns the value of the
specified property for the first
matched element or sets the value
of the specified property for all
matched elements.



Construct Type Description

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text content
of every matched element.

Getting ready
Follow these steps to create a page with a 5 star rating control:

1. Let's create a page consisting of five star images arranged in a
row. When the stars are unselected, they appear in a grey
background, as shown in the following screenshot:

After clicking on a particular star, all the star images until the
clicked image are selected and appear in a golden background.
For example, if we click on the fourth star, the first four stars will
light up and show a rating of 4, as shown in the following
screenshot:



Now, if you click on the first star, starting in the reverse direction,
all the stars until the first star will switch off and show a rating of
1, as shown in the following screenshot:

2. To create this application, launch an ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe7 (or any other suitable name).

3. Add the jQuery library to the Scripts folder in the project.
4. Add an images folder to the project. Include the two types of

images in this folder, that is, a star image with a grey
background and a star image with a golden background.

5. Add a web form to the project and include the jQuery library on
the form.



6. Since we want to create the 5-star rating system as a
standalone control, add a Controls folder to the project. Now,
right-click on this folder in the Solution Explorer tab and go to
Add | New Item. From the dialog box that is launched, select
Web Forms User Control and name the control
RatingControl.acsx, as shown in the following screenshot. Click
on the Add button.

7. Open the RatingControl control in the Source mode. Go to
Toolbox | Standard, drag and drop a Panel control on the user
control. Drag and drop five Image controls inside the Panel
control. Also, add two Label controls below the Panel control to
display the current rating. This will create the following markup
in the user control:

<asp:Panel ID="pnlImgContainer" 

runat="server"> 

  <asp:Image ID="imgStar1" runat="server" 

ImageUrl="~/images/star_grey.png" /> 

  <asp:Image ID="imgStar2" runat="server" 

ImageUrl="~/images/star_grey.png" /> 

  <asp:Image ID="imgStar3" runat="server" 

ImageUrl="~/images/star_grey.png" /> 



  <asp:Image ID="imgStar4" runat="server" 

ImageUrl="~/images/star_grey.png" /> 

  <asp:Image ID="imgStar5" runat="server" 

ImageUrl="~/images/star_grey.png" /> 

</asp:Panel><br /> 

<asp:Label ID="lblLabel" runat="server" 

Text="Your Rating: " 

AssociatedControlID="lblStarRating" Font-

Bold="True"></asp:Label> 

<asp:Label ID="lblStarRating" runat="server">

</asp:Label>

8. Register the user control by adding the following code to the
web.config file in the system.web node:

<pages> 

<controls> 

<add tagPrefix="uc1" tagName="RatingControl" 

src="~/Controls/RatingControl.ascx"/> 

</controls> 

</pages>

9. Now, open the web form in the Design or Source mode, and
drag and drop the RatingControl control on the form area. This
will add the following markup to the web form:

<uc1:RatingControl runat="server" 

id="RatingControl" />

Also, note that the following @Register directive is added to the
page:

<%@ Register 

Src="~/Controls/RatingControl.ascx" 

TagPrefix="uc1" TagName="RatingControl" %> 

How to do it…
Add the following jQuery code to a <script> block on the user control
after the @Control directive:



<script type="text/javascript"> 

$(document).ready(function() { 

  var BasePath = "images/"; 

  var greyImg = "star_grey.png"; 

  var goldImg = "star_golden.png"; 

  $("#<%=pnlImgContainer.ClientID%> 

img").on("click", 

    function() { 

      if ($(this).prop("src").indexOf(greyImg) > 

-1) { 

        $(this).prop("src", BasePath + goldImg); 

        $(this).prevAll("img").prop("src", 

BasePath + goldImg); 

      } else { 

        $(this).prop("src", BasePath + greyImg); 

        $(this).nextAll("img").prop("src", 

BasePath + greyImg); 

      } 

      var rating = $("# 

<%=pnlImgContainer.ClientID%> img[src$='" + 

goldImg + "']").length; 

      $("#

<%=lblStarRating.ClientID%>").text(rating); 

    }); 

}); 

</script>

How it works…
The 5 star rating control is designed as follows:

1. In the jQuery code, set the base path of the images as well as
the respective image names for the on (a golden background)
and off (a grey background) images:

var BasePath = "images/"; 

var greyImg = "star_grey.png"; 

var goldImg = "star_golden.png";

2. Attach a click event handler to each image in the container
panel, as follows:

$("#<%=pnlImgContainer.ClientID%> 

img").on("click", function () {…});



3. In the preceding handler, determine whether the clicked image
is the grey background image, as follows:

if ($(this).prop("src").indexOf(greyImg) > -1)

4. If the preceding condition is true, then update the clicked image
to display the golden background image, as follows:

$(this).prop("src", BasePath + goldImg);

At the same time, change all the preceding images to the golden
background image as well:

$(this).prevAll("img").prop("src", BasePath + 

goldImg);

5. If the condition in step 3 is false, update the clicked image to
display the grey background image, as follows:

$(this).prop("src", BasePath + greyImg);

At the same time, change all the succeeding images to a grey
background image as well:

  $(this).nextAll("img").prop("src", BasePath 

+ greyImg);

6. Determine the rating by counting the number of golden stars
using the source property of each Image control:

var rating = $("# 

<%=pnlImgContainer.ClientID%> img[src$='" + 

goldImg + "']").length;

Display this rating in the Label control on the page:

$("#

<%=lblStarRating.ClientID%>").text(rating);

There's more…



Since the rating control is implemented as an independent user
control, multiple instances of it can be added to the web form. So,
drag and drop another instance on the form so that there are two
such controls on the page:

<uc1:RatingControl runat="server" 

id="RatingControl" /> 

<uc1:RatingControl runat="server" 

id="RatingControl2" />

The page will now display the two standalone controls, as shown in
the following screenshot. Each control can be used independently of
the other.

See also
The Previewing image uploads in MVC recipe



Previewing image uploads in
MVC
In this example, let's create an MVC application that can preview
images using a client script prior to uploading it on the server. Note
that this recipe only covers the client script, and the server code for
the upload is not dealt with. The following table shows a quick
summary of the constructs used in this example:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element
based on its ID.

.attr("name") OR

.attr("name", "value")

jQuery
method

This returns a string with
the required attribute value
of a matched element. It
can also be used to set the
attribute to the required
value.

change jQuery
event

This is fired when the
value of an element
changes. It corresponds to
the JavaScript change
event.



Construct Type Description

FileReader.onloadend Event
handler
provided
by the
FileReader
interface

This defines the event
handler for the loadend
event. It is executed each
time the event is
completed.

FileReader.readAsDataUrl() Method
provided
by the
FileReader
interface

This reads the contents of
a file or blob (a file-like
object of immutable, raw
data). After the reading is
completed, the result
attribute returns a URL of
the read file data.

FileUpload.files FileList
object

The selected files from the
file upload element that is
returned as a FileList
object.

FileUpload.files.length Property of
the FileList
object

This is the number of files
in the FileList object.

FileUpload.file.type Property of
the FileList
object

This returns the file type
for the given file object.



Construct Type Description

.match(regexp) JavaScript
function

This matches a string
against a regular
expression.

.on() jQuery
event
binder

This attaches an event
handler for one or more
events to the matched
elements.

window.File Interface
provided
by the File
API

This provides informational
attributes of a file such as
a name, last modified
date, and so on.

window.FileReader Interface
provided
by the File
API

This enables reading the
contents of a file or blob (a
file-like object of
immutable, raw data).

Getting ready
Follow these steps to build an MVC application for an image
preview:

1. Let's create an MVC application with an image preview area and
file upload control, as shown in the following screenshot:



2. On browsing and selecting an image file, a preview of the image
can be seen in the shaded area on the page, as shown in the
following screenshot:



3. To create the preceding page, launch a new ASP.NET Web
Application project in Visual Studio. Select the Empty template
and ensure that the MVC checkbox is selected, as shown in the
following screenshot. Name the application Recipe8 (or any
other suitable name).



4. ASP.NET automatically adds a Scripts folder to the MVC project
with the jQuery library files. You can retain these files or replace
them with the latest version.

5. Right-click on the Controllers folder in the project and go to
Add | Controller. From the dialog box that opens up, select
MVC5 Controller – Empty, and then click on the Add button,
as shown in the following screenshot:



6. Name the controller DefaultController. By default, Visual
Studio adds the Index ActionResultto the controller.

7. In the Solution Explorer tab, right-click by navigating to Views |
Default and go to Add | View. Enter Index for the View name,
and click on the Add button on the Add View dialog box, as
shown in the following screenshot. Note that the Template
selected is Empty (without model):



8. Add an image element and a file upload element to the View.
Also, include the jQuery library. Thus, the markup of the View
will be as follows:

<h2>Preview a file using upload control</h2> 

<script src="~/Scripts/jquery-2.1.4.js">

</script> 

<div> 

<img id="imgPreview" alt="Preview your image 

here" width="400" height="300" /><br/><br/> 

<input type="file" id="FileUpload1" /> 

</div>

9. Include a background color for the preceding image element by
adding the following style:

<style type="text/css"> 

#imgPreview{ 

  background-color:lightgray; 

  border-width:1px; 

  border-style:solid; 

} 

</style>

How to do it…
Add the following jQuery code to a <script> block on the View:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("#FileUpload1").on("change", function() { 

    if (this.files.length == 0) { 

      alert("No image is selected"); 

      return; 

    } 

    if (!window.File || !window.FileReader) { 

      alert("File API is not supported in this 

browser"); 

      return; 

    } 

    if (this.files[0].type.match("image.*")) { 

      var reader = new FileReader(); 

      reader.readAsDataURL(this.files[0]); 

      reader.onloadend = function() { 



        $("#imgPreview").attr("src", this.result); 

      } 

    } 

  }); 

}); 

</script>

How it works…
The image preview works as follows:

1. To run the application, in the Solution Explorer tab, right-click
by navigating to Views | Default | Index.cshtml, and click on
View in Browser (Internet Explorer). After successfully loading
the page in the browser, browse the image file required to be
uploaded. The page will display the image in the preview area.

2. This is accomplished by attaching an event hander for the
change event of the file upload control, as follows:

$("#FileUpload1").on("change", function () 

{…});

This event is triggered each time a file is browsed and selected
in the file upload control.

3. In the preceding handler, firstly, we check whether the file
upload control returns an empty object, as follows:

if (this.files.length == 0) { 

  alert("No image is selected"); 

  return; 

}

4. Secondly, we also need to verify that the browser supports the
File API or not. This can be done using the following checks:

if (!window.File || !window.FileReader) { 

  alert("File API is not supported in this 

browser"); 

  return; 

}



5. Next, check whether the selected file is an image or not using a
regular expression on the file type:

if (this.files[0].type.match("image.*"))

Note
Since the file upload element returns a FileList object, we
can select the first file using index 0, that is, files[0]. We
then match the regular expression image.* on the file type to
filter only image files.

If the selected file is an image file, create a FileReader object to
read the file:

var reader = new FileReader();

Now, using the FileReader object, read the contents of the file:

reader.readAsDataURL(this.files[0]);

Write the event handler for the loadend event. This will be
executed when the file has been read completely:

reader.onloadend = function () {…}

In the preceding loadend event handler, since the result attribute
contains the URL of the file data, we can set the source attribute
of the image element to this URL, as follows:

$("#imgPreview").attr("src", this.result);

See also



The Using images to create effects in the Menu control recipe



Chapter 7. Ajax Using jQuery
This chapter demonstrates the use of jQuery to post asynchronous
requests using Ajax. The list of recipes covered is as follows:

Setting up Ajax with ASP.NET using jQuery
Consuming page methods
Consuming Web services
Consuming WCF services
Retrieving data from a Web API
Making Ajax calls to a controller action
Making Ajax calls to a HTTP handler

Introduction
AJAX (Asynchronous JavaScript and XML) is a term coined by
Jesse James Garrett of Adaptive Path. It stands for a combination of
different technologies that help you communicate seamlessly with
the server without the need for a page refresh. Ajax applications
involve the following technologies:

JavaScript for running the core Ajax engine
The XmlHttpRequest object to communicate with the server
A web presentation using HTML and CSS or XSLT
DOM to work with the HTML structure
XML and JSON for data interchange

The XmlHttpRequest object is used to post HTTP/HTTPS requests to
the server. Most modern browsers have a built-in XmlHttpRequest
object.

Note



JSON (JavaScript Object Notation) is a lightweight data
interchange format and is increasingly used in Ajax applications.
It is basically a collection of name/value pairs and can be used
with different data types, such as a string, number, Boolean,
arrays, and objects.

In a typical web application, the client submits data to the server for
processing and the server sends back the refreshed content to the
client. This causes a visible page refresh, and the user needs to wait
for a page reload before there is any further interaction with the
page. This flow of request/response is demonstrated in the following
figure:

Ajax provides a new paradigm for communication between the
browser and the server. Using Ajax, parts of a web page can be
updated without sending the entire page to the server. By
communicating behind the scenes, the need for an explicit page
refresh is eliminated. The user can continue to work with the web
page without having to wait for a response from the server, as
demonstrated in the following figure:



In Ajax-based applications, a JavaScript call is made to the Ajax
engine that uses the XmlHttpRequest object to send the request
asynchronously to the server. As a result, the backend
communication becomes transparent and the users' interaction with
the application is not interrupted. This enhances the interactivity of
the page; thus improving the users' experience. At the same time,
the performance and speed of the page is improved.

The jQuery library provides many methods for working with Ajax. In
this chapter, we will explore the use of the following methods:

$.ajaxSetup(options): This method can be used to define
default settings for making Ajax calls on the page. The setup is
done at one time and all the subsequent Ajax calls on the page
are made using these default settings.
$.ajax(settings): This is a generic low-level function that helps
you create any type of Ajax request. There are a number of
configuration settings that can be applied using this function
such as the type of HTTP request (GET/POST/PUT/DELETE), the
request URL, parameters to be sent to the server, data type of
the response, as well as the callback functions to be executed
on the successful/unsuccessful invocation of the Ajax call.
$("…").load(): This is a shortcut method used to load text or
HTML content from the server and display it in the matched
elements.



$.getJSON(): This method posts an HTTP GET request to the
server. The data is returned in the JSON format.

Note
The data type of the response received from the server can be
text, HTML, XML, JSON, or JSONP. Under the hood, the shortcut
methods use the $.ajax() method to post requests to the server.



Setting up Ajax with ASP.NET
using jQuery
This recipe demonstrates the use of the $.ajaxSetup() function to
configure global settings for making Ajax calls on a web page. These
settings will be used across multiple Ajax calls. The constructs used
in this example are summarized in the following table:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on
its ID

$.ajax() jQuery
function

This posts an Ajax request to the
server with the set options.

$.ajaxSetup() jQuery
function

This sets up default values for
Ajax requests.

.append() jQuery
method

This inserts content at the end of
each matched element.

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.



Construct Type Description

.each() jQuery
method

This iterates over the matched
elements and executes a function
for each element.

event.preventDefault() jQuery
method

This prevents the default action of
the event from being triggered.

.find() jQuery
method

This finds all elements that match
the filter.

.html() jQuery
method

This returns the HTML content of
the first matched element or sets
the HTML content of every
matched element.

.load() jQuery
method

This loads text or HTML data from
the server and displays it in the
matched element.

.on() jQuery
event
binder

This attaches an event handler for
one or more events to the
matched elements.



Construct Type Description

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text content
of every matched element.

Getting ready
Follow these steps to setup Ajax with ASP.NET using jQuery:

1. Let's create a web page that triggers Ajax calls to retrieve the
HTML and XML data, respectively. On loading, the page will
display a Button control, as shown in the following screenshot:

After clicking on the Button control, the page will retrieve the
contents from the respective sources and display them on the
page in the following format:



2. To create this page, launch an ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe1 (or any other suitable name).

3. Add the jQuery library to the project in a Scripts folder.
4. Add a web form to the project and include the jQuery library in

the form.
5. Next, we will create an HTML file containing some test data. To

do this, right-click on the project in the Solution Explorer tab
and go to Add | New Item. From the Installed templates
section in the dialog box, go to Web | HTML Page. Name the
file, Sample.html. Add the following content to this HTML file:

<!DOCTYPE html> 

<html> 



  <head> 

    <title></title> 

    <meta charset="utf-8" /> 

  </head> 

  <body> 

    <h3>Book Shelf from HTML</h3> 

    <table> 

      <tr> 

        <th>Title</th><th>Author</th>

<th>Category</th> 

      </tr> 

      <tr> 

        <td>Huckleberry Finn</td><td>Mark 

Twain</td><td>Classic</td> 

      </tr> 

      <tr> 

        <td>David Copperfield</td><td>Charles 

Dickens</td><td>Classic</td> 

      </tr> 

      <tr> 

        <td>The Alchemist</td><td>Paulo 

Coelho</td><td>Fiction</td> 

      </tr> 

      <tr> 

        <td>You Can Win</td><td>Shiv 

Khera</td><td>Non-Fiction</td> 

      </tr> 

    </table>  

  </body> 

</html>

6. Add an XML file to the project by right-clicking on the project in
the Solution Explorer tab and navigating to Add | New Item.
From the dialog box, which is displayed, go to Data | XML File
from the Installed templates section. Name the file Sample.xml
and include the following content in the file:

<?xml version="1.0" encoding="utf-8" ?> 

<BookShelf> 

  <Book> 

    <Title>Huckleberry Finn</Title> 

    <Author>Mark Twain</Author> 

    <Category>Classic</Category> 

  </Book> 

  <Book> 

    <Title>David Copperfield</Title> 



    <Author>Charles Dickens</Author> 

    <Category>Classic</Category> 

  </Book> 

  <Book> 

    <Title>The Alchemist</Title> 

    <Author>Paulo Coelho</Author> 

    <Category>Fiction</Category> 

  </Book> 

  <Book> 

    <Title>You Can Win</Title> 

    <Author>Shiv Khera</Author> 

    <Category>Non-Fiction</Category> 

  </Book> 

</BookShelf>

7. Add a Button control to the form along with two empty div
elements: one to display the HTML content and the other to
display the XML content. Thus, the markup of the form will be as
follows:

<asp:Button ID="btnLoad" runat="server" 

Text="Click to load content using AJAX" /> 

<div id="htmlcontent"> 

</div> 

<div id="xmlcontent"> 

</div>

8. To style the content retrieved from the HTML and XML files, add
the following styles to the head element:

<style type="text/css"> 

table, th, td { 

  border: 1px solid black; 

  border-collapse: collapse 

} 

th{ 

  font-weight:700;             

  font-variant:small-caps; 

  text-align:center; 

  background-color:lightgray; 

  padding:5px; 

} 

td{ 

  background-color:lavender; 

  padding:5px; 



} 

</style>

How to do it…
Include the following jQuery code in a script block on the page:

script type="text/javascript"> 

  $(document).ready(function() { 

    $.ajaxSetup({ 

      method: "GET", 

      data: {}, 

      timeout: 2000, 

      cache: false 

    }); 

    $("#<%=btnLoad.ClientID%>").on("click", 

function(evt) { 

      evt.preventDefault(); 

      $.ajax({ 

        url: "Sample.html", 

        dataType: "html", 

        success: function(response) { 

          

$("#htmlcontent").html("").append(response); 

        }, 

        error: function(jqXHR, textStatus, 

errorThrown) { 

          if (textStatus == "error") { 

            alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

          } 

        } 

      }); 

      $.ajax({ 

        url: "Sample.xml", 

        dataType: "xml", 

        success: function(response) { 

          $("#xmlcontent").html("").append("

<h3>Book Shelf from XML</h3>"); 

          $("#xmlcontent").append("<table>"); 

          $("#xmlcontent table").append("<tr>

<th>Title</th><th>Author</th><th>Category</th>

</tr>"); 

          $(response).find("Book").each(function() 

{ 



            $("#xmlcontent table").append("<tr>

<td>" + $(this).find("Title").text() + "</td><td>" 

+ $(this).find("Author").text() + "</td><td>" + 

$(this).find("Category").text() + "</td></tr>"); 

          }); 

        }, 

        error: function(jqXHR, textStatus, 

errorThrown) { 

          if (textStatus == "error") { 

            alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

          } 

        } 

      }); 

    }); 

  }); 

</script>

How it works…
The retrieval of HTML and XML content using Ajax is done as
follows:

1. When the page is launched, the $.ajaxSetup() function
configures the global settings for all Ajax calls on the page:

$.ajaxSetup({ 

  method: "GET", 

  data: {}, 

  timeout: 2000, 

  cache: false 

});

It sets the following properties:

The type/method of a request is set to HTTP GET
Empty data is sent to the server
A timeout of 2000 milliseconds is set so that the call can be
terminated if the server does not respond within this
timeframe
The cache is set to false so that the requested content is
not cached by the browser



2. When you click on the button on the page, its corresponding
click event handler is triggered:

$("#<%=btnLoad.ClientID%>").on("click", 

function (evt) {…});

In this event handler, first, prevent the page from posting back
due to the button click event:

evt.preventDefault();

Next, initiate an Ajax call to the Sample.html page by setting the
required options:

$.ajax({ 

  url: "Sample.html", 

  dataType: "html", 

  success: function (response) { 

    

$("#htmlcontent").html("").append(response); 

  }, 

  error: function (jqXHR, textStatus, 

errorThrown) { 

    if (textStatus == "error") { 

      alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

    } 

  } 

});

The preceding code snippet sets the following options when
making the Ajax call to the HTML page:

The request URL is set to Sample.html.
The data type of the expected response from the server is
set to html.
A callback function is defined when the request made to the
server is successful. This function clears the contents of the
div area with the htmlcontent ID and displays the data
received from the server in the same.



A callback function is defined when the request made to the
server fails. This callback function has three parameters:
jqXHR (the XMLHttpRequest object), textStatus (types of
errors, such as abort, parsererror, timeout, error, or null),
and errorThrown (an optional exception object). When the
textStatus parameter is error, we display the status and
the statusText values from the jqXHR XMLHttpRequest object.

3. Next, initiate another Ajax call to the Sample.xml file with the
required options:

$.ajax({ 

  url: "Sample.xml", 

  dataType: "xml", 

  success: function(response) { 

    $("#xmlcontent").html("").append("<h3>Book 

Shelf from XML</h3>"); 

    $("#xmlcontent").append("<table>"); 

    $("#xmlcontent table").append("<tr>

<th>Title</th><th>Author</th><th>Category</th>

</tr>"); 

    $(response).find("Book").each(function() { 

      $("#xmlcontent table").append("<tr><td>" 

+ $(this).find("Title").text() + "</td><td>" + 

$(this).find("Author").text() + "</td><td>" + 

$(this).find("Category").text() + "</td>

</tr>"); 

    }); 

  }, 

  error: function(jqXHR, textStatus, 

errorThrown) { 

    if (textStatus == "error") { 

      alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

    } 

  } 

});

In the preceding request the following options are set:

The request URL is Sample.xml.
The expected data type of the server response is xml.



A callback function is defined when the request made to the
server is successful. This callback function clears the div
element with the xmlcontent ID and adds a header, as
shown in the following code snippet:

$("#xmlcontent").html("").append("

<h3>Book Shelf from XML</h3>");

It then adds an empty table element to this div element and
appends the table header:

$("#xmlcontent").append("<table>"); 

$("#xmlcontent table").append("<tr>

<th>Title</th><th>Author</th>

<th>Category</th></tr>");

For each Book node in the XML file, it displays the
corresponding child nodes: Title, Author, and Category, as
follows:

$(response).find("Book").each(function () 

{ 

  $("#xmlcontent table").append("<tr>

<td>" + $(this).find("Title").text() + "

</td><td>" + 

$(this).find("Author").text() + "</td>

<td>" + $(this).find("Category").text() + 

"</td></tr>"); 

});

A callback function is defined when the request made to the
server is unsuccessful. This callback function has three
parameters: jqXHR (the XMLHttpRequest object), textStatus
(types of errors, such as abort, parsererror, timeout, error,
or null), and errorThrown (an optional exception object).
When the textStatus parameter value is error, we display
the status and the statusText values from the
XMLHttpRequest object.

There's more…



To retrieve text or HTML content asynchronously using the GET
request, jQuery provides a.load()shortcut method. Using this
function, we can alternatively make the first Ajax call to the
Sample.html file, as follows:

$("#htmlcontent").html("").load("Sample.html", 

function (response, status, xhr) { 

  if (status == "error") { 

    alert("An error has occurred: " + xhr.status + 

" " + xhr.statusText); 

  } 

});

Note that a callback function is specified in this function. This is
executed when the .load() method is completed. The callback
function has parameters, such as response (which contains the
resulting content if the call succeeds), status (which contains the
status of the call), and xhr (the XMLHttpRequest object).

See also
The Consuming page methods recipe



Consuming page methods
Page methods provide a convenient way of invoking server-side code
from the client script. They are simply server-side methods that are
decorated with the System.Web.Services.WebMethod label. In this recipe,
we will use the Northwind database in a page method to retrieve a list
of customers from a particular country. The method will be invoked
from the client script using jQuery Ajax.

The constructs used in this example are summarized in the following
table:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on
its ID.

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

$.ajax() jQuery
function

This posts an Ajax request to the
server with the set options.

.append() jQuery
method

This inserts content at the end of
each matched element.

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.



Construct Type Description

event.

preventDefault()

jQuery
method

This prevents the default action of
the event from being triggered.

:gt(i) jQuery
selector

This selects matched elements that
have an index greater than i. It
uses a zero-based index.

.hide() jQuery
method

This hides the matched elements.

:hidden jQuery
selector

This selects hidden elements.

.is() jQuery
method

This returns a Boolean value if the
matched element satisfies a given
condition.

.on() jQuery
event
binder

This attaches an event handler for
one or more events to the matched
elements.

.remove() jQuery
method

This deletes the matched elements
from the DOM.



Construct Type Description

.show() jQuery
method

This displays the matched
elements.

.trim() JavaScript
function

This removes whitespaces from the
beginning and end of a string.

.val() jQuery
method

This returns the value of the first
matched element or sets the value
of every matched element.

window.location.href JavaScript
property

This returns the URL of the current
page.

Getting ready
Follow these steps to build a web page that exposes page methods:

1. Let's create a web page with a DropDownList control consisting of
a list of countries, as shown in the following screenshot:



After selecting any country from the dropdown, the page displays
the list of customers filtered by the selected country, as shown in
the following screenshot :

2. To create this application, launch an ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe2 (or any other suitable name).



3. Add the jQuery library to the project in a Scripts folder.
4. Add a web form to the project and include the jQuery library in the

form.
5. In the Solution Explorer tab, right-click on the project and go to

Add | New Item. From the launched dialog box, select Data under
the Installed templates section on the left-hand panel. Select
ADO.NET Entity Data Model from the middle panel. Enter a
suitable name for the model such as Northwind, and click on the
Add button:

6. This will launch the Entity Data Model Wizard dialog box, as
shown in the following screenshot. Select EF Designer from
database and click on the Next button:



On the next window, add a new connection to the Northwind
database. Save this connection in web.config as
NorthwindEntities, and click on Next:



Next, check the Customers table from the list of table objects, and
click on the Finish button:



7. In the code-behind file of the web form, that is, Default.aspx.vb
(VB) or Default.aspx.cs (C#), add the following page method.

For VB, the code is as follows:

<System.Web.Services.WebMethod> 

Public Shared Function GetCustomers(ByVal 

sCountry As String) As Customer() 

  Dim CustomerList As List(Of Customer) = New 

List(Of Customer)() 

  Dim db As NorthwindEntities = New 

NorthwindEntities() 

  Dim Query = From cust In db.Customers 

  Where cust.Country = sCountry 

  Select cust 

 

  For Each custObj In Query 



  Dim CustomerRecord As Customer = New 

Customer() 

  CustomerRecord.CustomerID = 

custObj.CustomerID 

  CustomerRecord.CompanyName = 

custObj.CompanyName 

  CustomerRecord.ContactName = 

custObj.ContactName 

  CustomerRecord.ContactTitle = 

custObj.ContactTitle 

  CustomerRecord.City = custObj.City 

  CustomerList.Add(CustomerRecord) 

  Next 

 

  Return CustomerList.ToArray 

End Function

For C#, the code is as follows:

[System.Web.Services.WebMethod] 

public static Customer[] GetCustomers(string 

sCountry) 

{ 

  List<Customer> CustomerList = new 

List<Customer>(); 

  NorthwindEntities db = new 

NorthwindEntities(); 

  var query = from cust in db.Customers 

  where cust.Country == sCountry 

  select cust; 

  foreach (var custObj in query) 

  { 

    Customer CustomerRecord = new Customer(); 

    CustomerRecord.CustomerID = 

custObj.CustomerID; 

    CustomerRecord.CompanyName = 

custObj.CompanyName; 

    CustomerRecord.ContactName = 

custObj.ContactName; 

    CustomerRecord.ContactTitle = 

custObj.ContactTitle; 

    CustomerRecord.City = custObj.City; 

    CustomerList.Add(CustomerRecord); 

  } 

  return CustomerList.ToArray(); 

}



8. The preceding GetCustomers()page method receives the country
field as an input parameter. It filters customer records by country
and returns an array of the Customer type.

Note
Note that the page method is required to have the following
configurations:

The method should be decorated with the
System.Web.Services.WebMethod label.
It should be declared as shared (VB) or static (C#).
It takes sCountry as an input parameter. This parameter
should be sent by the client script through the Ajax call.

9. Add a skeleton table element to the web form to display the list of
retrieved customers. Thus, the markup of the form will be as
follows:

<asp:Label ID="lblSelectCountry" runat="server" 

Text="Please select the country to view 

customers:"></asp:Label><br /><br /> 

<asp:DropDownList ID="ddlSelectCountry" 

runat="server"> 

  <asp:ListItem Text="--Select Country--" 

Value=""></asp:ListItem> 

  <asp:ListItem Text="Argentina" 

Value="Argentina"></asp:ListItem> 

  <asp:ListItem Text="Brazil" Value="Brazil">

</asp:ListItem> 

  <asp:ListItem Text="Canada" Value="Canada">

</asp:ListItem> 

  <asp:ListItem Text="Italy" Value="Italy">

</asp:ListItem> 

  <asp:ListItem Text="Mexico" Value="Mexico">

</asp:ListItem> 

  <asp:ListItem Text="UK" Value="UK">

</asp:ListItem> 

  <asp:ListItem Text="USA" Value="USA">

</asp:ListItem> 

</asp:DropDownList> 



<asp:Button ID="btnRetrieve" runat="server" 

Text="Retrieve" /> 

<br /><br /> 

<table id="tblResponse"> 

  <thead> 

    <tr> 

      <th>Customer ID</th> 

      <th>Company Name</th> 

      <th>Contact Name</th> 

      <th>Contact Title</th> 

      <th>City</th> 

    </tr> 

  </thead> 

</table>

10. Add the following styles to the head element on the page:
<style type="text/css"> 

table, th, td { 

  border: 1px solid black; 

  border-collapse: collapse; 

  padding:3px; 

} 

th{ 

  font-weight:700; 

  font-variant:small-caps; 

  text-align:center; 

  background-color:lightgray; 

} 

td{ 

  background-color:lightyellow; 

} 

</style>

How to do it…
Include the following jQuery code in a <script> block:

<script type="text/javascript"> 

  $(document).ready(function() { 

    $("#tblResponse").hide(); 

    $("#<%=btnRetrieve.ClientID%>").on("click", 

function(evt) { 

      evt.preventDefault(); 

      var sCountry = $("#

<%=ddlSelectCountry.ClientID%>").val().trim(); 



      if (sCountry != "") { 

        var loc = window.location.href; 

        $.ajax({ 

          url: loc + "/GetCustomers", 

          method: "POST", 

          data: '{ "sCountry": "' + sCountry + '"}', 

          dataType: "json", 

          contentType: "application/json; 

charset=utf-8", 

          timeout: 5000, 

          cache: false, 

          success: function(response) { 

            $("#tblResponse tr:gt(0)").remove(); 

            if ($("#tblResponse").is(":hidden")) 

              $("#tblResponse").show(); 

            $.each(response.d, 

              function() { 

                $("#tblResponse").append("<tr><td>" 

+ this['CustomerID'] + "</td><td>" + 

this['CompanyName'] + "</td><td>" + 

this['ContactName'] + "</td><td>" + 

this['ContactTitle'] + "</td><td>" + this['City'] + 

"</td></tr>"); 

              }); 

          }, 

          error: function(jqXHR, textStatus, 

errorThrown) { 

            if (textStatus == "error") { 

              alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

            } 

          } 

        }); 

      } else 

        alert("Please select a country to display 

the customer list."); 

    }); 

  }); 

</script>

How it works…
Posting an Ajax call to the page method works as follows:

1. When the page is launched, the table element that is used to
display the list of customers is initially hidden:



$("#tblResponse").hide();

2. An event handler is defined for the click function of the button in
the form:

$("#<%=btnRetrieve.ClientID%>").on("click", 

function (evt) {…});

In this event handler, the page is prevented from posting back
using the following code:

evt.preventDefault();

The selected value from the DropDownList control, that is, the
selected country is retrieved:

var sCountry = $("#

<%=ddlSelectCountry.ClientID%>").val().trim();

The preceding string is trimmed to remove whitespaces, if any. If
the country selected is nonempty, find the URL of the current page
using the window.location.href JavaScript property:

var loc = window.location.href;

Now, make an Ajax call to the page method:

$.ajax({ 

  url: loc + "/GetCustomers", 

  method: "POST", 

  data: '{ "sCountry": "' + sCountry + '"}', 

  dataType: "json", 

  contentType: "application/json; charset=utf-

8", 

  timeout: 5000, 

  cache: false, 

  success: function (response) 

  $("#tblResponse tr:gt(0)").remove(); 

  if ($("#tblResponse").is(":hidden")) 

    $("#tblResponse").show(); 

    $.each(response.d, function () { 



      $("#tblResponse").append("<tr><td>" + 

this['CustomerID'] + "</td><td>" + 

this['CompanyName'] + "</td><td>" + 

this['ContactName'] + "</td><td>" + 

this['ContactTitle'] + "</td><td>" + 

this['City'] + "</td></tr>"); 

    }); 

  }, 

  error: function (jqXHR, textStatus, 

errorThrown) { 

    if (textStatus == "error") { 

      alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

    } 

  } 

});

In the preceding call, the following options are set:

The request URL is set to the page method, which is
accessible at UrlOfCurrentPage/NameOfPageMethod.
The type/method of the request is set to POST since we are
sending form data to the server.
The data, that is, the selected country is sent to the server as
a JSON formatted string. Remember that the page method
has an input parameter, sCountry. This is sent as a
name/value pair as follows:

data: '{ "sCountry": "' + sCountry + '"}',

Note
It is important to note that the sCountry name in the
preceding JSON string is the input parameter of the page
method.

The data type of the server response is json.
The content type of the sent request is set to
application/json and the character is set to UTF-8.



A timeout of 5000 milliseconds is specified after which the
request will be terminated if the server fails to respond.
The cache is set to false so that the content will not be
cached by the browser.
A callback function is defined when the request is successful.
In this function, the contents of the display table are emptied
by deleting all the rows except the header:

$("#tblResponse tr:gt(0)").remove();

If the display table is hidden, it is made visible to the user:
if ($("#tblResponse").is(":hidden")) 

  $("#tblResponse").show();

Then, we loop through each element in the returned
response, retrieving the CustomerID, CompanyName,
ContactName, ContactTitle, and City fields, as follows:

$.each(response.d, function () { 

  $("#tblResponse").append("<tr><td>" + 

this['CustomerID'] + "</td><td>" + 

this['CompanyName'] + "</td><td>" + 

this['ContactName'] + "</td><td>" + 

this['ContactTitle'] + "</td><td>" + 

this['City'] + "</td></tr>"); 

});

Note
Note that in order to access the returned data from the server,
we use response.d in the preceding code.

3. A callback function is defined when the request is unsuccessful. If
the textStatus parameter is error, then the status and statusText
values of the XmlHttpRequest object are displayed.

4. It is also possible that the user may not select any country from
the DropDownList control. Hence, the program should display a
message when the selected field is empty:



alert("Please select a country to display the 

customer list.");

See also
The Making AJAX calls to a HTTP handler recipe



Consuming Web services
jQuery Ajax enables you to consume web services through client
code. In this recipe, we will send form data to a web service method.
The constructs used in this example are summarized in the following
table:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on its
ID.

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

$.ajax() jQuery
function

This posts an Ajax request to the
server with the set options.

.append() jQuery
method

This inserts content at the end of each
matched element.

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.

event.

preventDefault()

jQuery
method

This prevents the default action of the
event from being triggered.



Construct Type Description

.focus() jQuery
event
binder

This triggers the focus event of an
element or binds an event handler to
the focus event.

:gt(i) jQuery
selector

This selects matched elements that
have an index greater than i. It uses
the zero-based index.

:hidden jQuery
selector

This selects hidden elements.

.hide() jQuery
method

This hides the matched elements.

.is() jQuery
method

This returns a Boolean value if the
matched element satisfies a given
condition.

.on() jQuery
event
binder

This attaches an event handler for
one or more events to the matched
elements.

.remove() jQuery
method

This deletes the matched elements
from the DOM.



Construct Type Description

.show() jQuery
method

This displays the matched elements.

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text content of
every matched element.

.trim() JavaScript
function

This removes whitespaces from the
beginning and end of a string.

.val() jQuery
method

This returns the value of the first
matched element or sets the value of
every matched element.

Getting ready
Follow these steps to build a web page that will consume a web
service:

1. In this recipe, let's create a form where the user can search for
employee records by the first name or last name, as shown in
the following screenshot:



On entering a keyword to be searched, if a match is found, the
results are displayed, as shown in the following screenshot:



If no match is found, the page simply displays a message, as
shown in the following screenshot:

2. To create this application, launch an ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe3 (or any other suitable name).

3. Add the jQuery library to the project in a Scripts folder.
4. Add a web form to the project and include the jQuery library in

the form.
5. Include the following markup in the form:

<h3>Key in the Employee name to search:</h3> 

<asp:TextBox ID="txtKeyword" runat="server">

</asp:TextBox> 

<asp:Button ID="btnSearch" runat="server" 

Text="Search" /> 

<br /><br /> 

<table id="tblResponse"> 

  <thead> 

    <tr> 

      <th>Employee ID</th> 

      <th>First Name</th> 

      <th>Last Name</th> 

      <th>City</th> 



      <th>Country</th> 

      <th>Home Phone</th> 

    </tr> 

  </thead> 

</table> 

<br /> 

<asp:Label ID="lblMessage" runat="server">

</asp:Label>

Notice that the form has a Label control, lblMessage. This field
will be used to display information/error messages to the user, if
any.

6. Style the page elements using the following CSS:
<style type="text/css"> 

  table, 

  th, 

  td { 

    border: 1px solid black; 

    border-collapse: collapse; 

    padding: 3px; 

  } 

   

  th { 

    font-weight: 700; 

    font-variant: small-caps; 

    text-align: center; 

    background-color: lightgray; 

  } 

   

  td { 

    background-color: lightyellow; 

  } 

</style>

7. Add an Employee class to the project by right-clicking on the
project and navigating to Add | Class. Name the class
Employee.vb (VB) or Employee.cs (C#). Add the following
properties to the class.

For VB, the code is as follows:



Public Class Employee 

  Public Property EmployeeID As String 

  Public Property LastName As String 

  Public Property FirstName As String 

  Public Property City As String 

  Public Property Country As String 

  Public Property HomePhone As String 

End Class

For C#, the code is as follows:

public class Employee 

{ 

  public String EmployeeID { get; set; } 

  public String LastName { get; set; } 

  public String FirstName { get; set; } 

  public String City{ get; set; } 

  public String Country { get; set; } 

  public String HomePhone { get; set; } 

}

8. Now, right-click on the project in the Solution Explorer tab and
go to Add | New Folder. Name the new folder Services.

9. Right-click on the Services folder and go to Add | New Item.
From the launched dialog box, select Web from the Installed
templates on the left-hand side of the screen. From the middle
panel, select Web Service (ASMX). Give the service a suitable
name, such as NorthwindService.asmx, and click on the Add
button:



10. In the code-behind file of NorthwindService.asmx, uncomment
the following statements at the top of the file to enable the
service to be accessed by Ajax:

For VB, the statement is as follows:

<System.Web.Script.Services.ScriptService()>

For C#, the statement is as follows:

[System.Web.Script.Services.ScriptService]

11. Add the following namespace at the top of file. This will enable
us to pick the Northwind database connection string from the
web.config file.

For VB, the code is as follows:

Imports System.Web.Configuration

For C#, the code is as follows:



using System.Web.Configuration;

12. Next, add a GetEmployeeResult()web method to the code-behind
file.

For VB, the code is as follows:

<WebMethod()> 

Public Function GetEmployeeResult(ByVal 

sSearch As String) As Employee() 

  Dim employeeList As List(Of Employee) = New 

List(Of Employee)() 

  Dim strConn As String = 

WebConfigurationManager.ConnectionStrings("Nor

thwindConnection").ConnectionString 

  Dim con As SqlConnection = New 

SqlConnection(strConn) 

  Dim strSql As String = "SELECT * FROM 

EMPLOYEES WHERE FirstName LIKE '%" + sSearch + 

"%' or LastName like '%" + sSearch + "%'" 

  Dim cmd As SqlCommand = New 

SqlCommand(strSql, con) 

  con.Open() 

  Dim dr As SqlDataReader = 

cmd.ExecuteReader() 

  While (dr.Read()) 

    Dim emp As Employee = New Employee() 

    emp.EmployeeID = 

dr("EmployeeID").ToString() 

    emp.FirstName = dr("FirstName").ToString() 

    emp.LastName = dr("LastName").ToString() 

    emp.City = dr("City").ToString() 

    emp.Country = dr("Country").ToString() 

    emp.HomePhone = dr("HomePhone").ToString() 

    employeeList.Add(emp) 

  End While 

  con.Close() 

  Return employeeList.ToArray() 

End Function

For C#, the code is as follows:

[WebMethod] 

public Employee[] GetEmployeeResult(String 



sSearch) 

{ 

  List<Employee> employeeList = new 

List<Employee>(); 

  String strConn = 

WebConfigurationManager.ConnectionStrings["Nor

thwindConnection"].ConnectionString; 

  SqlConnection con = new 

SqlConnection(strConn); 

  String strSql = "SELECT * FROM EMPLOYEES 

WHERE FirstName LIKE '%" + sSearch + "%' or 

LastName like '%" + sSearch + "%'"; 

  SqlCommand cmd = new SqlCommand(strSql, 

con); 

  con.Open(); 

  SqlDataReader dr = cmd.ExecuteReader(); 

  while (dr.Read()) 

  { 

    Employee emp = new Employee(); 

    emp.EmployeeID = 

dr["EmployeeID"].ToString(); 

    emp.FirstName = 

dr["FirstName"].ToString(); 

    emp.LastName = dr["LastName"].ToString(); 

    emp.City = dr["City"].ToString(); 

    emp.Country = dr["Country"].ToString(); 

    emp.HomePhone = 

dr["HomePhone"].ToString(); 

    employeeList.Add(emp); 

  } 

  con.Close(); 

  return employeeList.ToArray(); 

}

The web method defined in the preceding code receives a
search keyword from the calling program. It then connects to the
Northwind database using ADO.NET and queries the Employees
table to return records where the FirstName or LastName column
contains the search keyword. The list of records is returned as
an array of the Employee type.

Note



Note that the calling program needs to pass the sSearch
input parameter to the web method.

13. Add the connection string to the Northwind database in the
configuration section of the web.config file:

<connectionStrings> 

  <add name="NorthwindConnection" 

providerName="System.Data.SqlClient" 

connectionString="Data 

Source=localhost;Initial 

Catalog=Northwind;Integrated Security=True;"/> 

</connectionStrings>

Note
Note that we are using Windows Authentication for all database
driven examples in this book. Hence in the MS SQL Server, it is
important to give permission to the Windows account to access
the Northwind database.

How to do it…
Include the following jQuery code in a <script> block on the page:

$(document).ready(function () { 

  $("#tblResponse").hide(); 

  $("#<%=lblMessage.ClientID%>").hide(); 

  $("#<%=txtKeyword.ClientID%>").focus(); 

  $("#<%=btnSearch.ClientID%>").on("click", 

function (evt) { 

    evt.preventDefault(); 

    $("#<%=lblMessage.ClientID%>").hide(); 

    var sKeyword = $("#

<%=txtKeyword.ClientID%>").val().trim(); 

    if (sKeyword != "") { 

      $.ajax({ 

        url: 



"/Services/NorthwindService.asmx/GetEmployeeResult

", 

        type: "POST", 

        data: '{ "sSearch": "' + sKeyword + '"}', 

        dataType: "json", 

        contentType: "application/json; 

charset=utf-8", 

        timeout: 5000, 

        cache: false, 

        success: function (response) { 

          $("#tblResponse tr:gt(0)").remove(); 

          if ($("#tblResponse").is(":hidden")) 

            $("#tblResponse").show(); 

          if (response.d.length > 0) { 

            $.each(response.d, function () { 

              ("#tblResponse").append("<tr><td>" + 

this['EmployeeID'] + "</td><td>" + 

this['FirstName'] + "</td><td>" + this['LastName'] 

+ "</td><td>" + this['City'] + "</td><td>" + 

this['Country'] + "</td><td>" + this['HomePhone'] 

+ "</td></tr>"); 

            }); 

          } else $("#

<%=lblMessage.ClientID%>").text("No 

results").show(); 

        }, 

        error: function (jqXHR, textStatus, 

errorThrown) { 

          if (textStatus == "error") { 

            alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText);} 

          } 

       }); 

    } 

    else 

      alert("Please enter your search keyword"); 

    }); 

  }); 

</script>

How it works…
The Ajax call to the web service works as follows:



1. When the page is launched, a text field is displayed to the user
to key in the search keywords. The following initializations are
done on the page:

The result table is hidden, as follows:
$("#tblResponse").hide();

The label used to display information/error messages is
hidden:

$("#<%=lblMessage.ClientID%>").hide();

The cursor is focused on the text field so that the user can
key in the required search keywords:

$("#<%=txtKeyword.ClientID%>").focus();

2. An event handler is attached in order to respond to the click
event of the button on the page:

$("#<%=btnSearch.ClientID%>").on("click", 

function (evt) {…});

In this event handler, the page is prevented from posting back
using the following code:

evt.preventDefault();

It is possible that the previous query would have displayed
information/error messages, so the lblMessage control is hidden
once again:

$("#<%=lblMessage.ClientID%>").hide();

Next, the search keyword, entered in the text field, is retrieved.
Whitespaces, if any, are trimmed:



var sKeyword = $("#

<%=txtKeyword.ClientID%>").val().trim();

If the keyword is not blank, an Ajax call is made to the web
service using HTTP POST:

if (sKeyword != "") { 

  $.ajax({ 

    url: 

"/Services/NorthwindService.asmx/GetEmployeeRe

sult", 

    type: "POST", 

    data: '{ "sSearch": "' + sKeyword + '"}', 

    dataType: "json", 

    contentType: "application/json; 

charset=utf-8", 

    timeout: 5000, 

    cache: false, 

    success: function(response) { 

      $("#tblResponse tr:gt(0)").remove(); 

      if ($("#tblResponse").is(":hidden")) 

        $("#tblResponse").show(); 

      if (response.d.length > 0) { 

        $.each(response.d, function() { 

          $("#tblResponse").append("<tr><td>" 

+ 

          this['EmployeeID'] + "</td><td>" + 

this['FirstName'] + 

          "</td><td>" + this['LastName'] + "

</td><td>" + this['City'] + "</td><td>" + 

this['Country'] + "</td><td>" + 

this['HomePhone'] + "</td></tr>"); 

        }); 

      } else $("#

<%=lblMessage.ClientID%>").text("No  

        results ").show(); 

      }, 

      error: function(jqXHR, textStatus, 

errorThrown) { 

        if (textStatus == "error") { 

          alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

        } 

      } 



    }); 

}

In the preceding Ajax call, the following options are set:

The request URL is set to WebServicePath/WebMethodName.
The type/method of the HTTP request is set to POST.
The data consists of a JSON formatted string. The
searched keyword is sent using a name/value pair. The
name is set to sSearch and the value is set to the string
retrieved from the text field. The JSON formatted string is
as follows:

'{ "sSearch": "' + sKeyword + '"}'

The expected data type of the response is set to json.
The content type is set to application/json and the
character is set to utf-8.
A timeout of 5000 milliseconds is specified so that the
request is terminated if the server fails to respond within
this timeframe.
The cache is set to false so that the response is not
cached in the browser.
A callback function is specified for the successful
completion of the Ajax call. This function, first of all, clears
the display table of any previously displayed items:

$("#tblResponse tr:gt(0)").remove();

If the table is hidden, it is made visible:
if ($("#tblResponse").is(":hidden")) 

   $("#tblResponse").show();

Next, it checks whether the response is nonempty. This can
be done by checking the length of response.d. If the
response is nonempty, each item in the response array is
displayed:

if (response.d.length > 0) { 

  $.each(response.d, function () { 



    $("#tblResponse").append("<tr><td>" + 

this['EmployeeID'] + "</td><td>" + 

this['FirstName'] + "</td><td>" + 

this['LastName'] + "</td><td>" + 

this['City'] + "</td><td>" + 

this['Country'] + "</td><td>" + 

this['HomePhone'] + "</td></tr>"); 

  }); 

}

However, if the response is empty, an error is displayed
using the lblMessage control, as follows:

$("#<%=lblMessage.ClientID%>").text("No 

results").show();

3. A callback function is specified for an unsuccessful Ajax call. It
displays the status and statusText parameters of XmlHttpObject
in case of an error.

4. If, however, the search keyword is blank when the user clicks on
the button, the following error message is displayed to the user:

alert("Please enter your search keyword");

See also
The Consuming WCF services recipe



Consuming WCF services
Consuming a WCF service is similar to consuming a web service, as
discussed in the previous recipe. In this example, we will redo the
previous recipe, but this time, using a WCF service. The constructs
used in this example are summarized in the following table:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on its
ID.

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

$.ajax() jQuery
function

This posts an Ajax request to the
server with the set options.

.append() jQuery
method

This inserts content at the end of each
matched element.

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.

event.

preventDefault()

jQuery
method

This prevents the default action of the
event from being triggered.



Construct Type Description

.focus() jQuery
event
binder

This triggers the focus event of an
element or binds an event handler to
the focus event.

:gt(i) jQuery
selector

This selects matched elements that
have an index greater than i. It uses
the zero-based index.

:hidden jQuery
selector

This selects hidden elements.

.hide() jQuery
method

This hides the matched elements.

.is() jQuery
method

This returns a Boolean value if the
matched element satisfies a given
condition.

.on() jQuery
event
binder

This attaches an event handler for
one or more events to the matched
elements.

.remove() jQuery
method

This deletes the matched elements
from the DOM.



Construct Type Description

.show() jQuery
method

This displays the matched elements.

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text content of
every matched element.

.trim() JavaScript
function

This removes whitespaces from the
beginning and end of a string.

.val() jQuery
method

This returns the value of the first
matched element or sets the value of
every matched element.

Getting ready
Follow these steps to build a page that consumes a WCF service:

1. Similar to the previous recipe, the goal here is to search for
employee records by the first or last name. When a match is
found, the records are displayed, as shown in the following
screenshot:



If no match is found, the page displays a corresponding
message to the user:

2. To create this application, launch an ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe4 (or any other suitable name).

3. Add the jQuery library to the project in a Scripts folder.
4. Add a web form to the project and include the jQuery library in

the form.
5. Include the following markup in the form:



<h3>Key in the Employee name to search:</h3> 

<asp:TextBox ID="txtKeyword" runat="server">

</asp:TextBox> 

<asp:Button ID="btnSearch" runat="server" 

Text="Search" /> 

<br /><br /> 

<table id="tblResponse"> 

  <thead> 

    <tr> 

      <th>Employee ID</th> 

      <th>First Name</th> 

      <th>Last Name</th> 

      <th>City</th> 

      <th>Country</th> 

      <th>Home Phone</th> 

    </tr> 

  </thead> 

</table> 

<br /> 

<asp:Label ID="lblMessage" runat="server">

</asp:Label>

Notice that the form has a Label control, lblMessage. This field
will be used to display information/error messages to the user, if
any.

6. Style the page elements using the following CSS:
<style type="text/css"> 

table, th, td { 

  border: 1px solid black; 

  border-collapse: collapse; 

  padding:3px; 

} 

th{ 

  font-weight:700; 

  font-variant:small-caps; 

  text-align:center; 

  background-color:lightgray; 

} 

td{ 

  background-color:lightyellow; 

} 

</style>



7. Add an Employee class to the project by right-clicking on the
project and navigating to Add | Class. Name the class
Employee.vb (VB) or Employee.cs (C#). Add the following
properties to the class.

For VB, the code is as follows:

Public Class Employee 

  Public Property EmployeeID As String 

  Public Property LastName As String 

  Public Property FirstName As String 

  Public Property City As String 

  Public Property Country As String 

  Public Property HomePhone As String 

End Class

For C#, the code is as follows:

public class Employee 

{ 

  public String EmployeeID { get; set; } 

  public String LastName { get; set; } 

  public String FirstName { get; set; } 

  public String City{ get; set; } 

  public String Country { get; set; } 

  public String HomePhone { get; set; } 

}

8. Next, we will add a WCF service to the project. To do this, right-
click on the project in the Solution Explorer tab, and go to Add
| New Folder. Name the new folder, Services.

9. Right-click on the Services folder and go to Add | New Item.
From the launched dialog box, select Web from the Installed
templates on the left-hand side of the screen. From the middle
panel, select WCF Service (Ajax-enabled). Give the service a
suitable name such as NorthwindService.svc, and click on the
Add button:



10. In the code-behind file of NorthwindService.svc, add the
following namespace in order to enable us to retrieve the
Northwind database connection string from web.config.

For VB, the namespace is as follows:

Imports System.Web.Configuration

For C#, the namespace is as follows:

using System.Web.Configuration;

11. Next, add the GetEmployeeResult()operation contract to the
preceding code-behind file.

For VB, the code is as follows:

<OperationContract()> 

Public Function GetEmployeeResult(ByVal 

sSearch As String) As Employee() 

  Dim employeeList As List(Of Employee) = New 

List(Of Employee)() 



  Dim strConn As String = 

WebConfigurationManager.ConnectionStrings("Nor

thwindConnection").ConnectionString 

  Dim con As SqlConnection = New 

SqlConnection(strConn) 

  Dim strSql As String = "SELECT * FROM 

EMPLOYEES WHERE FirstName LIKE '%" + sSearch + 

"%' or LastName like '%" + sSearch + "%'" 

  Dim cmd As SqlCommand = New 

SqlCommand(strSql, con) 

  con.Open() 

  Dim dr As SqlDataReader = 

cmd.ExecuteReader() 

  While (dr.Read()) 

    Dim emp As Employee = New Employee() 

    emp.EmployeeID = 

dr("EmployeeID").ToString() 

    emp.FirstName = dr("FirstName").ToString() 

    emp.LastName = dr("LastName").ToString() 

    emp.City = dr("City").ToString() 

    emp.Country = dr("Country").ToString() 

    emp.HomePhone = dr("HomePhone").ToString() 

    employeeList.Add(emp) 

  End While 

  con.Close() 

  Return employeeList.ToArray() 

End Function

For C#, the code is as follows:

[OperationContract] 

public Employee[] GetEmployeeResult(String 

sSearch) 

{ 

  List<Employee> employeeList = new 

List<Employee>(); 

  String strConn = 

WebConfigurationManager.ConnectionStrings["Nor

thwindConnection"].ConnectionString; 

  SqlConnection con = new 

SqlConnection(strConn); 

  String strSql = "SELECT * FROM EMPLOYEES 

WHERE FirstName LIKE '%" + sSearch + "%' or 

LastName like '%" + sSearch + "%'"; 

  SqlCommand cmd = new SqlCommand(strSql, 

con); 



  con.Open(); 

  SqlDataReader dr = cmd.ExecuteReader(); 

  while (dr.Read()) 

  { 

    Employee emp = new Employee(); 

    emp.EmployeeID = 

dr["EmployeeID"].ToString(); 

    emp.FirstName = 

dr["FirstName"].ToString(); 

    emp.LastName = dr["LastName"].ToString(); 

    emp.City = dr["City"].ToString(); 

    emp.Country = dr["Country"].ToString(); 

    emp.HomePhone = 

dr["HomePhone"].ToString(); 

    employeeList.Add(emp); 

  } 

  con.Close(); 

  return employeeList.ToArray(); 

}

The operation contract receives a search keyword from the
calling program. It then connects to the Northwind database
using ADO.NET and queries the Employees table to return
records where the FirstName or LastName column contains the
search keyword. The list of records is returned as an array of
the Employee type.

Note
Note that the calling program needs to pass the sSearch
input parameter to the WCF operation contract.

12. Add a connection string to the Northwind database in the
configuration section of the web.config file:

<connectionStrings> 

  <add name="NorthwindConnection" 

providerName="System.Data.SqlClient" 

connectionString="Data 

Source=localhost;Initial 



Catalog=Northwind;Integrated Security=True;"/> 

</connectionStrings>

Note
Note that we are using Windows Authentication for all database
driven examples in this book. Hence in the MS SQL Server, it is
important to give permission to the Windows account to access
the Northwind database.

How to do it…
Include the following jQuery code in a <script> block on the page:

<script type="text/javascript"> 

  $(document).ready(function() { 

    $("#tblResponse").hide(); 

    $("#<%=lblMessage.ClientID%>").hide(); 

    $("#<%=txtKeyword.ClientID%>").focus(); 

    $("#<%=btnSearch.ClientID%>").on("click", 

function(evt) { 

      evt.preventDefault(); 

      $("#<%=lblMessage.ClientID%>").hide(); 

      var sKeyword = $("#

<%=txtKeyword.ClientID%>").val().trim(); 

      if (sKeyword != "") { 

        $.ajax({ 

          url: 

"/Services/NorthwindService.svc/GetEmployeeResult"

, 

          type: "POST", 

          data: '{ "sSearch": "' + sKeyword + 

'"}', 

          dataType: "json", 

          contentType: "application/json; 

charset=utf-8", 

          timeout: 5000, 

          cache: false, 

          success: function(response) { 

            $("#tblResponse tr:gt(0)").remove(); 

            if ($("#tblResponse").is(":hidden")) 



              $("#tblResponse").show(); 

            if (response.d.length > 0) { 

              $.each(response.d, function() { 

                $("#tblResponse").append("<tr>

<td>" + this['EmployeeID'] + "</td><td>" + 

this['FirstName'] + "</td><td>" + this['LastName'] 

+ "</td><td>" + this['City'] + "</td><td>" + 

this['Country'] + "</td><td>" + this['HomePhone'] 

+ "</td></tr>"); 

              }); 

            } else 

              $("#

<%=lblMessage.ClientID%>").text("No 

results").show(); 

          }, 

          error: function(jqXHR, textStatus, 

errorThrown) { 

            if (textStatus == "error") { 

              alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

            } 

          } 

        }); 

      } else 

        alert("Please enter your search keyword"); 

    }); 

  }); 

</script>

How it works…
The Ajax call to the WCF service works as follows:

1. When the page is launched, a text field is displayed to the user
for keying in the search keyword. The following initializations are
done on the page:

The result table is initially hidden using the following:
$("#tblResponse").hide();

The Label field for displaying information / error messages
is also hidden:



$("#<%=lblMessage.ClientID%>").hide();

The cursor is focused on the text field so that the user can
key in the required keywords:

$("#<%=txtKeyword.ClientID%>").focus();

2. An event handler is defined to respond to the click event of the
button on the page:

$("#<%=btnSearch.ClientID%>").on("click", 

function (evt) {…});

In this event handler, the page is prevented from posting back
using the following:

evt.preventDefault();

It is possible that the previous query would have displayed
information/error messages, so the lblMessage control is hidden
once again:

$("#<%=lblMessage.ClientID%>").hide();

3. Next, the keyword entered in the text field is retrieved.
Whitespaces, if any, are trimmed:

var sKeyword = $("#

<%=txtKeyword.ClientID%>").val().trim();

If the keyword is not blank, an Ajax call is made to the Web
service:

if (sKeyword != "") { 

  $.ajax({ 

    url: 

"/Services/NorthwindService.svc/GetEmployeeRes

ult", 

    type: "POST", 

    data: '{ "sSearch": "' + sKeyword + '"}', 



    dataType: "json", 

    contentType: "application/json; 

charset=utf-8", 

    timeout: 5000, 

    cache: false, 

    success: function(response) { 

      $("#tblResponse tr:gt(0)").remove(); 

      if ($("#tblResponse").is(":hidden")) 

        $("#tblResponse").show(); 

      if (response.d.length > 0) { 

        $.each(response.d, 

          function() { 

            $("#tblResponse").append("<tr>

<td>" + this['EmployeeID'] + "</td><td>" + 

this['FirstName'] + "</td><td>" + 

this['LastName'] + "</td><td>" + this['City'] 

+ "</td><td>" + this['Country'] + "</td><td>" 

+ this['HomePhone'] + "</td></tr>"); 

          }); 

      } else $("#

<%=lblMessage.ClientID%>").text("No 

results").show(); 

    }, 

    error: function(jqXHR, textStatus, 

errorThrown) { 

      if (textStatus == "error") { 

        alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

      } 

    } 

  }); 

}

In the preceding Ajax call, the following options are set:

The request URL is set to WCFPath/OperationContract.
The type/method of the HTTP request is set to POST.
The data consists of a JSON formatted string. The search
keyword is sent as a name/value pair. The name is set to
sSearch and the value is set to the string retrieved from the
text field, as follows:

'{ "sSearch": "' + sKeyword + '"}'

The expected data type of the response is set to json.



The content type is set to application/json and the
character is set to utf-8.
A timeout of 5000 milliseconds is specified so that the
request is terminated if the server fails to respond within
this timeframe.
The cache is set to false so that the response is not
cached in the browser.
A callback function is specified for the successful
completion of the Ajax call. This function, first of all, clears
the display table:

$("#tblResponse tr:gt(0)").remove();

If the table is hidden, it is made visible.
if ($("#tblResponse").is(":hidden")) 

  $("#tblResponse").show();

4. Next, it checks whether the response is nonempty. This can be
done by checking the length of response.d. If the response is
nonempty, each item in the response array is displayed:

if (response.d.length > 0) { 

  $.each(response.d, function () { 

    $("#tblResponse").append("<tr><td>" + 

this['EmployeeID'] + "</td><td>" + 

this['FirstName'] + "</td><td>" + 

this['LastName'] + "</td><td>" + this['City'] 

+ "</td><td>" + this['Country'] + "</td><td>" 

+ this['HomePhone'] + "</td></tr>"); 

  }); 

}

However, if the response is empty, an error is displayed using
the lblMessage control:

$("#<%=lblMessage.ClientID%>").text("No 

results").show();

5. A callback function is specified for an unsuccessful Ajax call. It
displays the status and statusText parameters of XmlHttpObject



in case of an error.
6. If, however, the search keyword is blank when the user clicks on

the Button control, the following error message is displayed to
the user:

alert("Please enter your search keyword");

See also
The Consuming Web services recipe



Retrieving data from a Web API
A Web API (Web Application Programming Interface) is a HTTP
API that is created using the .NET framework. It uses the HTTP
protocol to return data. Since HTTP is available universally across a
wide range of platforms, these APIs can be used on Web and mobile
platforms and across various devices.

In this example, we will use jQuery Ajax to post a request to a Web
API. The constructs used in this example are summarized in the
following table:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on its
ID.

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

$.getJSON() jQuery
function

This loads the JSON data from the
server using the HTTP GET request.

.append() jQuery
method

This inserts content at the end of each
matched element.



Construct Type Description

click jQuery
event

This is fired when you click on an
element. It corresponds to the
JavaScript click event.

event.

preventDefault()

jQuery
method

This prevents the default action of the
event from being triggered.

.focus() jQuery
event
binder

This triggers the focus event of an
element or binds an event handler to
the focus event.

:gt(i) jQuery
selector

This selects matched elements that
have an index greater than i. It uses a
zero-based index.

.hide() jQuery
method

This hides the matched elements.

:hidden jQuery
selector

This selects hidden elements.

.is() jQuery
method

This returns a Boolean value if the
matched element satisfies a given
condition.



Construct Type Description

.on() jQuery
event
binder

This attaches an event handler for
one or more events to the matched
elements.

.remove() jQuery
method

This deletes the matched elements
from the DOM.

.show() jQuery
method

This displays the matched elements.

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text content of
every matched element.

.trim() JavaScript
function

This removes whitespaces from the
beginning and end of a string.

.val() jQuery
method

This returns the value of the first
matched element or sets the value of
every matched element.

Getting ready



Follow these steps to build a page that will load data from a Web
API:

1. Let's create a web page that allows you to search for customer
records from the Northwind database using either Customer ID
or Customer Name. When a match is found, the results are
returned, as shown in the following screenshot:

If no match is found, a message is displayed, as shown in the
following screenshot:



2. To create this application, launch an ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe5 (or any other suitable name).

Note
Note that we are using the Empty template in this recipe. If
Web API is chosen from the available templates, the API is
created using ASP.NET MVC.

3. Add the jQuery library to the project in a Scripts folder.
4. Add a web form to the project and include the jQuery library in

the form. In the head element, add the following styles:
<style type="text/css"> 

table, th, td { 

  border: 1px solid black; 

  border-collapse: collapse; 

  padding:3px; 

} 

th{ 

  font-weight:700; 

  font-variant:small-caps; 



  text-align:center; 

  background-color:lightgray; 

} 

td{ 

  background-color:lightyellow; 

} 

</style>

5. Add a Model folder by right-clicking on the project in the
Solution Explorer tab and navigating to Add | New Folder.
Next, right-click on the Model folder and go to Add | Class.
Name the class Customer.vb (VB) or Customer.cs (C#). Add the
following properties to this file.

For VB, the code is as follows:

Public Class Customer 

  Public Property CustomerID As String 

  Public Property CompanyName As String 

  Public Property ContactName As String 

  Public Property Phone As String 

  Public Property Country As String 

End Class

For C#, add the following code:

public class Customer 

{ 

  public String CustomerID { get; set;} 

  public String CompanyName { get; set; } 

  public String ContactName { get; set; } 

  public String Country { get; set; } 

  public String Phone { get; set; } 

}

6. Add a Controllers folder by right-clicking on the project and
navigating to Add | New Folder. Next, right-click on the
Controllers folder and go to Add | Controller. Select Web API
2 Controller – Empty from the list of available templates, as
shown in the following screenshot, and click on the Add button:



In the next dialog box, enter a suitable name for the controller.
We have named the controller, CustomerController:

7. Open the code-behind file of CustomerController, that is,
CustomerController.vb (VB) or CustomerController.cs (C#) and
add the following methods.

For VB, the code is as follows:

' GET api/<controller>/keyword 

Public Function GetCustomers(ByVal 

searchKeyword As String) As IEnumerable(Of 

Customer) 

  Dim customers As New List(Of Customer) 



  Dim con As New 

SqlConnection(WebConfigurationManager.Connecti

onStrings("NorthwindConnection").ConnectionStr

ing) 

  Dim strQuery As String = "SELECT * FROM 

CUSTOMERS WHERE CUSTOMERID LIKE '%" + 

searchKeyword + "%' OR COMPANYNAME LIKE '%" + 

searchKeyword + "%'" 

  Dim cmd As New SqlCommand(strQuery, con) 

  con.Open() 

  Dim reader As SqlDataReader = 

cmd.ExecuteReader() 

  While (reader.Read()) 

    Dim cust As New Customer() 

    cust.CustomerID = 

reader("CustomerID").ToString() 

    cust.CompanyName = 

reader("CompanyName").ToString() 

    cust.ContactName = 

reader("ContactName").ToString() 

    cust.Country = 

reader("Country").ToString() 

    cust.Phone = reader("Phone").ToString() 

    customers.Add(cust) 

  End While 

  con.Close() 

  Return customers 

End Function 

 

' GET api/<controller> 

Public Function GetAllCustomers() As 

IEnumerable(Of Customer) 

  Dim customers As New List(Of Customer) 

  Dim con As New 

SqlConnection(WebConfigurationManager.Connecti

onStrings("NorthwindConnection").ConnectionStr

ing) 

  Dim strQuery As String = "SELECT * FROM 

CUSTOMERS" 

  Dim cmd As New SqlCommand(strQuery, con) 

  con.Open() 

  Dim reader As SqlDataReader = 

cmd.ExecuteReader() 

  While (reader.Read()) 

    Dim cust As New Customer() 

    cust.CustomerID = 

reader("CustomerID").ToString() 

    cust.CompanyName = 



reader("CompanyName").ToString() 

    cust.ContactName = 

reader("ContactName").ToString() 

    cust.Country = 

reader("Country").ToString() 

    cust.Phone = reader("Phone").ToString() 

    customers.Add(cust) 

  End While 

  con.Close() 

  Return customers 

End Function

For C#, the code is as follows:

public IEnumerable<Customer> 

GetCustomers(String searchKeyword) 

{ 

  List<Customer> customers = new 

List<Customer>(); 

  SqlConnection con = new 

SqlConnection(WebConfigurationManager.Connecti

onStrings["NorthwindConnection"].ConnectionStr

ing); 

  String strQuery = "SELECT * FROM CUSTOMERS 

WHERE CUSTOMERID LIKE '%" + searchKeyword + 

"%' OR COMPANYNAME LIKE '%" + searchKeyword + 

"%'" ; 

  SqlCommand cmd = new SqlCommand(strQuery, 

con); 

  con.Open(); 

  SqlDataReader reader = cmd.ExecuteReader(); 

  while (reader.Read()) 

  { 

    Customer cust = new Customer(); 

    cust.CustomerID = 

reader["CustomerID"].ToString(); 

    cust.CompanyName = 

reader["CompanyName"].ToString(); 

    cust.ContactName = 

reader["ContactName"].ToString(); 

    cust.Country = 

reader["Country"].ToString(); 

    cust.Phone = reader["Phone"].ToString(); 

    customers.Add(cust); 

  } 

  con.Close(); 



  return customers; 

} 

public IEnumerable<Customer> GetAllCustomers() 

{  

  List<Customer> customers = new 

List<Customer>(); 

  SqlConnection con = new 

SqlConnection(WebConfigurationManager.Connecti

onStrings["NorthwindConnection"].ConnectionStr

ing); 

  String strQuery = "SELECT * FROM CUSTOMERS"; 

  SqlCommand cmd = new SqlCommand(strQuery, 

con); 

  con.Open(); 

  SqlDataReader reader = cmd.ExecuteReader(); 

  while (reader.Read()) 

  { 

    Customer cust = new Customer(); 

    cust.CustomerID = 

reader["CustomerID"].ToString(); 

    cust.CompanyName = 

reader["CompanyName"].ToString(); 

    cust.ContactName = 

reader["ContactName"].ToString(); 

    cust.Country = 

reader["Country"].ToString(); 

    cust.Phone = reader["Phone"].ToString(); 

    customers.Add(cust); 

  } 

  con.Close(); 

  return customers; 

}

We have defined two GET methods in the Web API. The
GetCustomers()method takes in a searchKeyword string
parameter and returns the list of all the customers from the
Customer table of the Northwind database, where the CustomerID
or CustomerName column contains this keyword. The second
GetAllCustomers()method takes no parameters and returns the
entire set of records from the Customer table.

Also, add the following namespaces at the top of the file.

For VB, the namespace is as follows:



Imports System.Web.Http 

Imports System.Data.SqlClient 

Imports System.Web.Configuration

For C#, the namespace is as follows:

using System.Web.Http; 

using System.Data.SqlClient; 

using System.Web.Configuration;

8. To connect to the Northwind database, add the following
connection string to the configuration section of web.config:

<connectionStrings> 

  <add name="NorthwindConnection" 

providerName="System.Data.SqlClient" 

connectionString="Data 

Source=localhost;Initial 

Catalog=Northwind;Integrated Security=True;"/> 

</connectionStrings>

Tip
Remember to give permission to the Windows account to
the Northwind database.

9. Add the routing information to the Web API in the
Application_Start procedure in Global.asax.

For VB, the code is as follows:

Sub Application_Start(ByVal sender As Object, 

ByVal e As EventArgs) 

  

RouteTable.Routes.MapHttpRoute("CustomerApi", 

"api/{controller}/{searchKeyword}", 

  defaults:=New With {.searchKeyword = 

System.Web.Http.RouteParameter.Optional}) 

End Sub



For C#, the code is as follows:

protected void Application_Start(object 

sender, EventArgs e) 

{ 

  RouteTable.Routes.MapHttpRoute( 

    name: "CustomerApi", 

    routeTemplate: 

"api/{controller}/{searchKeyword}", 

    defaults: new { searchKeyword = 

RouteParameter.Optional } 

  ); 

}

This exposes the methods of the Web API at
api/controller/keyword.

Note
If the RouteTable.Routes.MapHttpRoute method is not recognized,
add a reference to the System.Web.Http and
System.Web.Http.WebHost assemblies by right-clicking on the
project in the Solution Explorer tab and navigating to Add |
Reference.

How to do it…
Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

  $(document).ready(function() { 

    $("#tblResponse").hide(); 

    $("#<%=lblMessage.ClientID%>").hide(); 

    $("#<%=txtKeyword.ClientID%>").focus(); 

    $("#<%=btnSearch.ClientID%>").on("click", 

function(evt) { 

      evt.preventDefault(); 

      $("#<%=lblMessage.ClientID%>").hide(); 



      var sKeyword = $("#

<%=txtKeyword.ClientID%>").val().trim(); 

      var uri = ((sKeyword == "") ? "api/customer" 

: "api/customer/" + sKeyword); 

      $.getJSON(uri).done(function(data) { 

        $("#tblResponse tr:gt(0)").remove(); 

        if ($("#tblResponse").is(":hidden")) 

          $("#tblResponse").show(); 

        if (data.length > 0) { 

          $.each(data, function(key, val) { 

            $("#tblResponse").append("<tr><td>" + 

val.CustomerID + "</td><td>" + val.CompanyName + "

</td><td>" + val.ContactName + "</td><td>" + 

val.Phone + "</td><td>" + val.Country + "</td>

</tr>"); 

          }); 

        } else 

          $("#<%=lblMessage.ClientID%>").text("No 

results").show(); 

      }).fail(function(jqXHR, textStatus, 

errorThrown) { 

        alert("An error has occurred: " + 

textStatus + " " + errorThrown); 

      }); 

    }); 

  }); 

</script>

How it works…
The Ajax call to the Web API is made through the following steps:

1. When the page is loaded, the result table is hidden from the
user:

$("#tblResponse").hide();

2. The label control, used to display information/error messages to
the user, is also hidden initially:

$("#<%=lblMessage.ClientID%>").hide();

3. Next, the cursor is focused on the search keyword text field:
$("#<%=txtKeyword.ClientID%>").focus();



4. The page will call the Web API when you click on the Search
button. Hence, we write an event handler for the click event of
this button:

$("#<%=btnSearch.ClientID%>").on("click", 

function (evt) {…});

In this event handler, the page is prevented from posting back,
as follows:

evt.preventDefault();

Next, the label used to display information/error messages is
hidden:

$("#<%=lblMessage.ClientID%>").hide();

The search keyword is retrieved from the text field on the form.
It is trimmed to remove whitespaces, if any:

var sKeyword = $("#

<%=txtKeyword.ClientID%>").val().trim();

The Web API provides two GET methods: one with a parameter,
that is, the GetCustomers()method and the other without a
parameter, that is, the GetAllCustomers()method. The
GetCustomers()method can be accessed at
api/customer/searchKeyword, whereas the
GetAllCustomers()method can be accessed at api/customer.

Hence, depending on whether the keyword is provided or not,
we set the two respective URIs, as follows:

var uri = ((sKeyword == "") ? "api/customer" : 

"api/customer/" + sKeyword);

5. Now, we make the Ajax call to the Web API by sending a
request to the URI set in the preceding code using the



$.getJSON() method:
$.getJSON(uri)

The return object provides the .done() and .fail() callback
methods for successful and unsuccessful requests, respectively:

.done(function (data){…}) 

.fail(function (jqXHR, textStatus, 

errorThrown) {…});

6. The preceding .done() callback method clears the result table
by deleting all the rows except the header row:

$("#tblResponse tr:gt(0)").remove();

If the result table is not visible, it is shown to the user:

if ($("#tblResponse").is(":hidden")) 

  $("#tblResponse").show();

Next, we check the length of the data object returned from the
Web API. If the object is not empty, we print each record, as
follows:

if (data.length > 0){ 

  $.each(data, function (key, val) { 

    $("#tblResponse").append("<tr><td>" + 

val.CustomerID + "</td><td>" + val.CompanyName 

+ "</td><td>" + val.ContactName + "</td><td>" 

+ val.Phone + "</td><td>" + val.Country + "

</td></tr>"); 

  }); 

}

If the object is empty, simply display an information message to
the user:

$("#<%=lblMessage.ClientID%>").text("No 

results").show();



7. In the .fail() callback method of $.getJSON(), display the
status and statusText parameters of the jqXHR object, as
follows:

if (textStatus == "error") { 

  alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

}

See also
The Consuming page methods recipe



Making Ajax calls to a
controller action
Ajax calls can also be made to a Controller action in ASP.NET MVC
applications. In this example, let's post a request to the controller
action from a View. The constructs used in this example are
summarized in the following table:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on its
ID.

$.ajax() jQuery
function

This posts an Ajax request to the
server with the set options.

change jQuery
event

This is fired when the value of an
element changes. It corresponds to
the JavaScript change event.

.on() jQuery
event
binder

This attaches an event handler for
one or more events to the matched
elements.



Construct Type Description

.text() jQuery
method

This returns the combined text
content of each of the matched
elements or sets the text content of
every matched element.

.trim() JavaScript
function

This removes whitespaces from the
beginning and end of a string.

.val() jQuery
method

This returns the value of the first
matched element or sets the value of
every matched element.

Getting ready
Follow these steps to create a MVC application that will use Ajax to
post a request to the controller action:

1. Let's create a web page in ASP.NET MVC that returns the
weather of a particular city. When the page is loaded, it displays
a drop-down menu with a list of cities, as shown in the following
screenshot:



When a particular city is selected from the drop-down menu, the
weather information is retrieved from the Controller action and
displayed on the page, as shown in the following screenshot:

2. To create this application, launch an ASP.NET Web Application
project in Visual Studio and name it Recipe6 (or any other
suitable name). Select the Empty template and make sure that
the MVC checkbox is selected, as shown in the following
screenshot:



3. Click on the OK button to proceed.
4. Add the jQuery library to the project in a Scripts folder.
5. In the Solution Explorer tab, right-click on the Controllers

folder and go to Add | Controller. From the Add Scaffold
dialog box that is launched, choose MVC5 Controller – Empty,
and click on the Add button:



Name the controller HomeController in the following dialog box,
and click on the Add button:

6. In the code-behind file of HomeController, you will notice that, by
default, an ActionResult method called Index is defined. Right-
click on the Index method, and click on the Add View... menu
option, as shown in the following screenshot:



This will launch the Add View window, as shown in the following
screenshot. Enter Index for the View name text field and select
the Empty (without model) template. Uncheck the Use a
layout page option, and click on the Add button:

7. Open the code-behind file of the Index view and add the
following markup:

<!DOCTYPE html> 

<html> 

  <head> 

    <meta name="viewport" 

content="width=device-width" /> 

    <title>City Weather</title> 

    <script src="~/Scripts/jquery-2.1.4.js">



</script> 

    <style type="text/css"> 

      #divResult { 

      font-variant: small-caps; 

      color: blue; 

      font-size: large; 

      } 

    </style> 

  </head> 

  <body> 

    <form id="form1"> 

      <div> 

        <h3>Please select the city to see the 

current weather:</h3> 

        <select id="ddlCities"> 

          <option value="">--Please Select--

</option> 

          <option value="Dubai">Dubai</option> 

          <option value="Hong Kong">Hong 

Kong</option> 

          <option 

value="Mumbai">Mumbai</option> 

          <option value="Perth">Perth</option> 

          <option 

value="Singapore">Singapore</option> 

          <option 

value="Wellington">Wellington</option> 

        </select> 

      </div> 

      <br /> 

      <div id="divResult"></div> 

    </form> 

  </body> 

</html>

8. Add a GetCityWeather()method to the code-behind file of
HomeController to return the weather of a particular city. This
method will take in one parameter, that is, the city name, and
return a string containing the weather information.

For VB, the code is as follows:

Public Function GetCityWeather(ByVal sCity As 

String) As String 

  Dim sWeather As String = String.Empty 

  Select Case sCity 



    Case "Dubai" 

      sWeather = "Hot and sunny" 

    Case "Hong Kong" 

      sWeather = "Sunny" 

    Case "Mumbai" 

      sWeather = "Partially sunny" 

    Case "Perth" 

      sWeather = "Cloudy and windy" 

    Case "Singapore" 

      sWeather = "Hot and cloudy" 

    Case "Wellington" 

      sWeather = "Mostly cloudy" 

    Case Else 

      sWeather = "No weather information 

found" 

  End Select 

  Return sWeather 

End Function

For C#, the code is as follows:

public string GetCityWeather(string sCity) 

{ 

  string sWeather = String.Empty; 

  switch (sCity) 

  { 

    case "Dubai": sWeather = "Hot and sunny"; 

      break; 

    case "Hong Kong": sWeather = "Sunny"; 

      break; 

    case "Mumbai": sWeather = "Partially 

sunny"; 

      break; 

    case "Perth": sWeather = "Cloudy and 

windy"; 

      break; 

    case "Singapore": sWeather = "Hot and 

cloudy"; 

      break; 

    case "Wellington": sWeather = "Mostly 

cloudy"; 

      break; 

    default: sWeather = "No weather 

information found"; 

      break; 

  } 



  return sWeather; 

}

Note
Note that the controller action accepts a sCity input
parameter of the string type. This parameter should be
provided by the client script in the Ajax request.

How to do it…
Add the following jQuery code to a<script> block on the View:

<script type="text/javascript"> 

  $(document).ready(function() { 

    $("#ddlCities").on("change", function() { 

      $("#divResult").text(""); 

      var sCity = $(this).val().trim(); 

      if (sCity != "") { 

        $.ajax({ 

          url: "/Home/GetCityWeather", 

          type: "POST", 

          data: '{ "sCity": "' + sCity + '"}', 

          dataType: "text", 

          contentType: "application/json; 

charset=utf-8", 

          timeout: 5000, 

          cache: false, 

          success: function(response) { 

            $("#divResult").text("The weather in " 

+ sCity + " is " + response); 

          }, 

          error: function(jqXHR, textStatus, 

errorThrown) { 

            if (textStatus == "error") { 

              alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

            } 

          } 

        }); 



      } 

    }); 

  }); 

</script>

How it works…
The posting of Ajax request to the controller action works as follows:

1. The div element divResult is used to display the weather
information that is retrieved asynchronously from the controller
action.

2. The Ajax request is posted when the selected item in the
dropdown changes. Hence, an event handler is written to
respond to the change event of the dropdown, as follows:

$("#ddlCities").on("change", function () {…});

In the preceding event handler, the contents of the div element
are cleared initially:

$("#divResult").text("");

The name of the selected city is retrieved. Whitespaces, if any,
are trimmed:

var sCity = $(this).val().trim();

If the city name is not blank, an Ajax request is posted to the
controller action, as follows:

if (sCity != ""){ 

  $.ajax({ 

    url: "/Home/GetCityWeather", 

    type: "POST", 

    data: '{ "sCity": "' + sCity + '"}', 

    dataType: "text", 

    contentType: "application/json; 

charset=utf-8", 



    timeout: 5000, 

    cache: false, 

    success: function (response) { 

      $("#divResult").text("The weather in " + 

sCity + " is " + response); 

    }, 

    error: function (jqXHR, textStatus, 

errorThrown) { 

      if (textStatus == "error") { 

        alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

      } 

    } 

  }); 

}

In the preceding Ajax call, the following options are set:

The request URL is set to Controller/Action.
The type/method of the HTTP request is set to POST.
The data consists of a JSON formatted string. The selected
city is sent as a name / value pair using sCity as the name
and the selected value from the dropdown as its value, as
follows:

'{ "sCity": "' + sCity + '"}'

The expected data type of the response is set to text since
the weather information sent by the controller action is in a
string format.
The content type is set to application/json and the
character is set to utf-8.
A timeout of 5000 milliseconds is specified so that the
request is terminated if the server fails to respond within
this timeframe.
The cache is set to false so that the response is not
cached in the browser.
A callback function is specified for the successful
completion of the Ajax call. This function simply displays the
response text in the div area, as follows:



function (response) { 

   $("#divResult").text("The 

weather in " + sCity + " is " + 

response); 

 }

A callback function is specified for an unsuccessful Ajax
call. It displays the status and statusText parameters of
XmlHttpObject in case of an error:

function (jqXHR, textStatus, errorThrown) 

{ 

   if (textStatus == "error") { 

     alert("An error has occurred: 

" + jqXHR.status + " " + 

jqXHR.statusText); 

   } 

 }

See also
The Retrieving data from a Web API recipe



Making Ajax calls to a HTTP
handler
A HTTP handler is a process that is executed when a request is
made for a particular resource. For example, ASP.NET provides a
page handler to process *.aspx files. Another example of an inbuilt
handler is the web service handler used to process *.asmx files.

In this recipe, let's write a generic HTTP handler that will return
custom data to the calling script. The constructs used in this example
are summarized in the following table:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based on its
ID

$.ajax() jQuery
function

This posts an Ajax request to the
server with the set options

$.map() jQuery
function

This transforms an array or object into
another array

.autocomplete() jQuery UI
method

This attaches the autocomplete
widget to the required element



Getting ready
Follow these steps to build a page that will make Ajax calls to a
HTTP handler:

1. Let's create a web page that provides an autocomplete text
field. The values in the autocomplete are filtered dynamically
using the characters entered in the text field, as shown in the
following screenshot:

Note that autocomplete consists of a list of countries retrieved
from the Country column of the Customers table in the Northwind
database.

2. To create this application, launch an ASP.NET Web Application
project in Visual Studio using the Empty template and name it
Recipe7 (or any other suitable name).

3. Next, we will add a LINQ to SQL class to access data from the
Customers table of the Northwind database. To do this, right-click
on the project in Solution Explorer and go to Add | New Item.
From the launched dialog box, select Data from the Installed
templates from the left-hand side panel and LINQ to SQL



classes from the middle panel. Name the item Northwind.dbml,
and click on the Add button:

4. Connect to the Northwind database in Server Explorer and
drag and drop the Customers table on Northwind.dbml, as shown
in the following screenshot:



5. Next, we will add the HTTP handler to the project. So, right-click
on the project in Solution Explorer and go to Add | New Item.
From the dialog box, click on the Web tab from the Installed
templates in the left-hand side panel and Generic Handler in
the middle panel. Enter the name SearchKeys.ashx and click on
the Add button:



6. In the code-behind file of the HTTP handler, add the following
namespaces on the top.

For VB, the namespace is as follows:

Imports System.Data.Linq.SqlClient 

Imports System.Web.Script.Serialization

For C#, the namespace is as follows:

using System.Data.Linq.SqlClient; 

using System.Web.Script.Serialization;

7. Update the SearchKeys class to include a ProcessRequest
method, as follows.

For VB, the code is as follows:

Public Class SearchKeys 

Implements System.Web.IHttpHandler 

 

Sub ProcessRequest(ByVal context As 

HttpContext) Implements 



IHttpHandler.ProcessRequest 

  Dim strSearchText As String = 

context.Request.QueryString("sSearchText").Tri

m() 

  Dim db As NorthwindDataContext = New 

NorthwindDataContext() 

  Dim countryList As List(Of String) = (From 

cust In db.Customers 

  Where SqlMethods.Like(cust.Country, "%" + 

strSearchText + "%") 

  Select cust.Country).Distinct().ToList() 

  Dim serializer As JavaScriptSerializer = New 

JavaScriptSerializer() 

  Dim jsonString As String = 

serializer.Serialize(countryList) 

  context.Response.Write(jsonString) 

End Sub 

 

ReadOnly Property IsReusable() As Boolean 

Implements IHttpHandler.IsReusable 

  Get 

    Return False 

  End Get 

End Property 

End Class

For C#, the code is as follows:

public class SearchKeys : IHttpHandler 

{ 

  public void ProcessRequest(HttpContext 

context) 

  { 

    string strSearchText = 

context.Request.QueryString["sSearchText"].Tri

m(); 

    NorthwindDataContext db = new 

NorthwindDataContext(); 

    List<string> countryList = (from cust in 

db.Customers 

    where SqlMethods.Like(cust.Country, "%" + 

strSearchText + "%") 

    select cust.Country).Distinct().ToList(); 

    JavaScriptSerializer serializer = new 

JavaScriptSerializer(); 

    string jsonString = 



serializer.Serialize(countryList); 

    context.Response.Write(jsonString); 

  } 

 

  public bool IsReusable 

  { 

    get 

    { 

      return false; 

    } 

  } 

}

Note
The HTTP handler created in the preceding code
implements the IHttpHander interface. This interface requires
the handler to implement the IsReusable property and
ProcessRequest method. When the handler is invoked, the
ProcessRequest method is called. Hence, this method
contains the code to generate the necessary output. The
IsReusable property indicates that the IHttpHandlerFactory
(that is, the object that calls the hander) can put the handler
in a pool and reuse it from the pool to improve the
performance. If this property is set to false, a new handler is
created each time the handler is invoked.

The ProcessRequest method takes a single argument of the
HttpContext type. The search term is extracted from this
argument using Request.QueryString.

Note
Note that the client script needs to pass the search keyword
to the handler as a query string parameter with the
sSearchText name.



The list of countries from the Customers table is filtered using the
search keyword. The list is then serialized into a JSON string
using the Serialize method of the JavaScriptSerializer class.

8. Next, we will add the jQuery UI autocomplete widget to the
project. To download this package using NuGet, from the menu
at the top of the Visual Studio IDE, go to Project | Manage
NuGet Packages. In the NuGet window, search for jQuery UI
autocomplete, as shown in the following screenshot. Click on
the Install button to install the package and its dependencies:

Notice that after the installation is completed, a Scripts folder is
created with a list of files, as shown in the following screenshot:



Note
Retain the downloaded version of jQuery to ensure
compatibility with the jQuery UI files.

9. Add a web form to the project and include the downloaded
scripts in the head section:

<script src="Scripts/jquery-1.4.4.js">

</script> 

<script src="Scripts/jquery.ui.core.js">

</script> 

<script src="Scripts/jquery.ui.position.js">

</script> 

<script src="Scripts/jquery.ui.widget.js">

</script> 

<script 

src="Scripts/jquery.ui.autocomplete.js">

</script>

10. Add the following markup to the form:
<div> 

  <h3>Autocomplete Search Box using AJAX</h3> 

  <asp:Label ID="lblSearchText" runat="server" 

Text="Key in the search item:">

</asp:Label>&nbsp; 

  <asp:TextBox ID="txtSearchText" 

runat="server"></asp:TextBox>&nbsp; 



  <asp:Button ID="btnSearch" runat="server" 

Text="Search" /> 

</div>

11. Include the jQuery UI style sheet in the form in the head section.
This style sheet can be downloaded from https://jqueryui.com:

<link href="Styles/jquery-ui.css" 

rel="stylesheet" />

How to do it…
Add the following jQuery code to a <script> block on the page:

<script type="text/javascript"> 

  $(document).ready(function() { 

    $("#

<%=txtSearchText.ClientID%>").autocomplete({ 

      source: function(request, response) { 

        $.ajax({ 

          url: "SearchKeys.ashx?sSearchText=" + 

request.term, 

          type: "POST", 

          dataType: "json", 

          contentType: "application/json; 

charset=utf-8", 

          timeout: 5000, 

          cache: false, 

          success: function(data) { 

            response($.map(data, function(item) { 

              return { 

                value: item 

              } 

            })); 

          }, 

          error: function(jqXHR, textStatus, 

errorThrown) { 

            if (textStatus == "error") { 

              alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

            } 

          } 

        }); 

      }, 

https://jqueryui.com/


      minLength: 1 

    }); 

  }); 

</script>

How it works…
The posting of the Ajax request to the HTTP handler works as
follows:

1. The jQuery UI autocomplete widget can be added to any field
that takes in an input. In this example, the widget is added to the
search text field, as follows:

$("#

<%=txtSearchText.ClientID%>").autocomplete({…}

);

2. The autocomplete() method provides a source option that can
be set to an array, string, or function. In this case, we set the
source to a function with two arguments, namely, a request
object and a response callback.

The request object has a term property that holds the text
currently typed in the field by the user. An Ajax request is then
posted to the HTTP handler using the term property as a query
string parameter. This query string parameter is called
sSearchText and is retrieved in the ProcessRequest method of the
HTTP handler:

source: 

function(request,response){ 

  $.ajax({ 

    url: "SearchKeys.ashx?sSearchText=" + 

request.term, 

    type: "POST", 

    dataType: "json", 

    contentType: "application/json; 

charset=utf-8", 

    timeout: 5000, 

    cache: false, 

    success: function (data) { 



      response($.map(data, function (item) 

      { 

        return { value: item } 

      })); 

    }, 

    error: function (jqXHR, textStatus, 

errorThrown) 

    { 

      if (textStatus == "error") { 

        alert("An error has occurred: " + 

jqXHR.status + " " + jqXHR.statusText); 

      } 

   } 

  }); 

},

In the preceding Ajax call, the following options are set:

The request URL is set to URLOfHTTPHandler?
QueryStringParam=Request.term.
The type/method of the HTTP request is set to POST.
The expected data type of the response is set to json.
The content type is set to application/json and the
character is set to utf-8.
A timeout of 5000 milliseconds is specified so that the
request is terminated if the server fails to respond within
this timeframe.
The cache is set to false so that the response is not
cached in the browser.
A callback function is specified for the successful
completion of the Ajax call. This function sets the argument
of the response callback to the data to be suggested to the
user using the $.map() function, as follows:

function (data) { 

    response($.map(data, function 

(item) { 

       return { value: item } 

    })); 

 },



A callback function is specified for an unsuccessful Ajax
call. It displays the status and statusText parameters of
XmlHttpObject in case of an error:

function (jqXHR, textStatus, errorThrown) 

{ 

   if (textStatus == "error") { 

     alert("An error has occurred: 

" + jqXHR.status + " " + 

jqXHR.statusText); 

   } 

 }

3. The autocomplete widget also provides the minLength option to
set the number of characters the user needs to type in before
the search is triggered. In this example, we will set the
minLength option to 1 character, as follows:

minLength: 1

See also
The Making Ajax calls to a controller action recipe



Chapter 8. Creating and Using
jQuery Plugins
This chapter teaches you how to create and use plugins. The recipes
discussed in this chapter are as follows:

Creating and using a simple plugin
Using the $ alias in the plugin
Calling methods on DOM elements
Providing default values
Providing method chaining
Adding actions to plugins
Using the form validation plugin
Downloading plugins using the NPM

Introduction
jQuery enables developers to build on top of the features of the core
library by creating plugins. A plugin is basically an extension of the
core library. It is a JavaScript file that is included on web pages along
with the jQuery library. It usually provides a set of configurable items
that developers can use to customize according to the requirements
of their applications.

A wide variety of useful plugins are written and available for use.
They cover many aspects of development, such as animations,
graphics, forms, UI, and responsiveness. To maintain all plugins in a
centralized location, a plugin repository was launched at
http://plugins.jquery.com in 2013. However, this site now offers a
read-only access to plugins and new releases can be made to the
NPM (Node Package Manager). Plugins can be downloaded and
used from the NPM.

http://plugins.jquery.com/


In this chapter, let's get started with creating our own plugins. We will
also download and use a popular jQuery plugin for validation of
forms.



Creating and using a simple
plugin
In this example, we will write a simple plugin to familiarize you with
the process of creating and using plugins. The programming
constructs used in this example are summarized as follows:

Construct Type Description

.append() jQuery
method

This inserts content at the end of
each matched element

jQuery jQuery
function

This refers to the jQuery function

jQuery("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag

Getting ready
Follow these steps to create a simple jQuery plugin:

1. Launch a new ASP.NET Web Application project in Visual
Studio using the Empty template and name it TestApplication
(or any other suitable name).

2. Create a Scripts folder in the project. Add the jQuery library
files to this folder.



3. Add a JavaScript file to the project by right clicking on the
Scripts folder in the Solution Explorer tab and navigating to
Add | JavaScript File. Name the file jquery.sample.js. This is
our plugin file to which we will add the custom functions to
extend the jQuery library.

Note
It is a good practice to name the plugin jquery.
{pluginname}.js.

4. Add a new web form to the project and name it Sample.aspx.
This form will be used to call the functions from the plugin.

5. Open the Sample.aspx page in the Source mode and drag and
drop the jQuery library and plugin files to generate the following
code in the head element:

<script src="Scripts/jquery-2.1.4.js">

</script> 

<script src="Scripts/jquery.sample.js">

</script>

How to do it…
Use the $ alias in the plugin as follows:

1. Open the plugin file and add a sampleMethod1()function to the
jQuery namespace, as shown in the following code snippet:

jQuery.sampleMethod1 = function(){ 

  jQuery("body").append("Inside the sample 1 

method"); 

};

2. Next, call the function defined earlier by adding the following
code to the Sample.aspx web form:



<script type="text/javascript"> 

$(document).ready(function () { 

  $.sampleMethod1(); 

}); 

</script>

How it works…
On running the page in the browser, the plugin function displays the
following text in the body of the page:

Since the function is defined in the jQuery namespace, it can be
directly called on the $ object.

Note
The jQuery library defines many utility functions as global
functions in the jQuery namespace. Some examples of these
utility functions are $.map(), $.each(), and $.ajax().

See also
The Using the $ alias in the plugin recipe



Using the $ alias in the plugin
In this example, let's modify the function defined in the plugin in the
previous recipe to use the $ alias instead of the full jQuery name.
The use of the $ shortcut enhances the readability of the code, but
its availability is not always guaranteed. It is possible that other
libraries in a project also use $. The use of the $.noConflict()
method releases the control of $ by jQuery to other libraries.

The constructs used in this example are summarized as follows:

Construct Type Description

$ jQuery
function

This refers to the jQuery function. $ is an
alias for jQuery.

$("html_tag") jQuery
selector

This selects all elements with the
specified HTML tag.

.append() jQuery
method

This inserts content at the end of each
matched element.

jQuery jQuery
function

This refers to the jQuery function.

Getting ready
Let's see the requirements for using the $ alias in the jQuery plugin:



1. We will reuse the web form (Sample.aspx) and the plugin
(jquery.sample.js) created in the previous recipe.

2. The plugin will be updated to include a wrapping function that
takes $ as a parameter. The jQuery object will be passed as an
argument to this function, as shown in the following code
snippet:

(function($){})(jQuery);

The passing of the jQuery object as an argument enables the
use of the $ shortcut within this wrapping function.

How to do it…
Follow these steps to add a method to the plugin:

1. Replace the code in the jquery.sample.js file with the following
code:

(function($) { 

  $.sampleMethod2 = function() { 

    $("body").append("Inside the sample 2 

method"); 

  }; 

})(jQuery);

2. Change the method name in the Sample.aspx web form to use
the one defined earlier:

<script type="text/javascript"> 

$(document).ready(function () { 

  $.sampleMethod2(); 

}); 

</script>

How it works…
Run the page in the browser. The output is similar to the one in the
previous recipe, that is, the required text is appended to the body of



the page, as shown in the following screenshot:

Since the method is defined in the jQuery namespace, it can be
called directly on the $ shortcut.

There's more
It is possible to define more than one function in a plugin. To add
more functions, simply append them to the original plugin file inside
the wrapping function. To demonstrate this, update the
jquery.sample.js file with the following code:

(function ($) { 

  $.sampleMethod1 = function () { 

    $("body").append("Inside the sample 1 

method<br/><br/>"); 

  }; 

  $.sampleMethod2 = function () { 

    $("body").append("Inside the sample 2 

method<br/><br/>"); 

  }; 

})(jQuery);

To execute these functions from the web form, call them
independently, as shown in the following code snippet:



<script type="text/javascript"> 

$(document).ready(function () { 

  $.sampleMethod1(); 

  $.sampleMethod2(); 

}); 

</script>

On running the page, we find that both the functions are executed,
as shown in the following screenshot:

See also
The Creating and using a simple plugin recipe



Calling methods on DOM
elements
In the previous recipe, the plugin is called on the $ shortcut. In this
recipe, we will create a plugin that can be called directly on the DOM
elements. This is possible by extending the jQuery.prototype, that is,
the jQuery.fn object.

Note
Every object in JavaScript is derived from Object and inherits
properties and methods from Object.prototype. When a property
or method is attached to the prototype, all instances of the object
reflect that property or method.

The constructs used in this example are summarized as follows:

Construct Type Description

$ jQuery
function

This refers to the jQuery
function. $ is an alias for jQuery.

$("#identifier") jQuery
selector

This selects an element based
on its ID.

$("html_tag") jQuery
selector

This selects all elements with
the specified HTML tag.



Construct Type Description

$(this) jQuery
object

This refers to the current jQuery
object.

.css() jQuery
method

This gets the style property for
the first matched element or sets
the style property for every
matched element.

.each() jQuery
method

This iterates over the matched
elements and executes a
function for each element.

.hasClass() jQuery
method

This returns true if the specified
CSS class is attached to an
element.

jQuery jQuery
function

This refers to the jQuery
function.

setInterval(function,

delay)

JavaScript
function

This executes a function
repeatedly after the specified
delay in milliseconds.

Getting ready



Follow these steps to create a plugin that will provide methods on
DOM elements:

1. Let's create a plugin that animates the text content of an
element by switching its colors at regular intervals. For example,
consider the following text on the page. At specific intervals, the
color of the text will change to the colors in a rainbow (that is,
violet, indigo, blue, green, yellow, orange, and red) one by one
in a cyclic manner.

2. Use the TestApplication project created earlier, and add a new
web form called Rainbow-1.0.aspx.

3. In the Scripts folder, add a new plugin by right-clicking on the
folder in the Solution Explorer tab and navigating to Add |
JavaScript File, name the plugin jquery.rainbow-1.0.js.

4. Include both the jQuery library and plugin in the web form by
dragging and dropping from the Solution Explorer tab to
generate the following code:

<script src="Scripts/jquery-2.1.4.js">

</script> 

<script src="Scripts/jquery.rainbow-1.0.js">

</script>



5. To style the text content on the page, add the following CSS
class to the head element:

<style type="text/css"> 

.sampleText{ 

  font-family:'Times New Roman', Times, serif; 

  font-size:30px;  

} 

</style>

6. Drag and drop a Panel control on the form. Add the CSS class
defined earlier to the Panel. Also, add some random text to
generate the following markup:

<asp:Panel ID="pnlTest" CssClass="sampleText" 

runat="server" > 

Text inside a Panel control 

</asp:Panel>

How to do it…
Follow these steps to add a method to the plugin:

1. In the plugin file, add a method named rainbow(), as shown in
the following code:

(function($) { 

  $.fn.rainbow = function() { 

    var $ele = this; 

    var colors = ["violet", "indigo", "blue", 

"green", "yellow", 

      "orange", "red" 

    ]; 

    var interval = 1000; 

    var cnt = 0; 

    setInterval(function() { 

      if (cnt >= colors.length) 

        cnt = 0; 

      $ele.css("color", colors[cnt]); 

      cnt++; 

    }, interval); 

  }; 

})(jQuery);



2. In the Rainbow-1.0.aspx web form, call the plugin method on the
Panel control, as follows:

<script type="text/javascript"> 

$(document).ready(function () { 

  $("#<%=pnlTest.ClientID%>").rainbow(); 

}); 

</script>

How it works…
The plugin works as follows:

1. In the plugin, we have created a rainbow()method in the $.fn
object:

(function ($) { 

$.fn.rainbow = function () {… }; 

 

})(jQuery);

Note
$.fn is an alias for $.prototype, that is, the jQuery prototype.

2. In this method, the current DOM element can be accessed using
the this keyword:

var $ele = this;

3. Next, we define an array of colors to iterate over the DOM
element:

var colors = ["violet", "indigo", "blue", 

"green", "yellow", "orange", "red"];

4. The interval of switching the text color is set to 1000
milliseconds using a variable, which is defined as follows:



var interval = 1000;

5. A counter variable is initialized to zero. This variable will keep
track of the color that is currently being displayed from the
colors array:

var cnt = 0;

6. We use the JavaScript setInterval() function to repeatedly
refresh the color every 1000 milliseconds:

setInterval(function () {…}, interval);

In this function, we check whether the counter has exceeded the
length of the array. If yes, then the counter is reset to zero. This
is to ensure that the colors are applied to the text in a cyclic
manner; that is, the first color is repeated after reaching the last
color from the array:

if (cnt >= colors.length) 

  cnt = 0;

The CSS property, color, is updated to the next color from the
array:

$ele.css("color", colors[cnt]);

The counter is incremented by one to get the next color from the
array for the subsequent iteration:

cnt++;

There's more…
So far, we have defined a basic plugin method. However, it is
incomplete, and there are many possibilities for improvement. To



demonstrate one possible enhancement, add another Panel to the
form and add some random text to it, as follows:

<asp:Panel ID="pnlTest" CssClass="sampleText" 

runat="server"> 

  Text inside a Panel control 

</asp:Panel> 

<br /><br /> 

<asp:Panel ID="pnlTestNew" runat="server">Text 

inside a new Panel control 

</asp:Panel>

Note that the CSS class sampleText is not applied to the new Panel
control.

Let's say within the plugin method, we want to selectively apply the
animation to only those elements that have the CSS class
sampleText applied to them. So, we will update the method to include
this condition, as follows:

(function($) { 

  $.fn.rainbow = function() { 

    var $ele = this; 

    if ($ele.hasClass("sampleText")) { 

      var colours = ["violet", "indigo", "blue", 

"green", 

        "yellow", "orange", "red" 

      ]; 

      var interval = 1000; 

      var cnt = 0; 

      setInterval(function() { 

        if (cnt >= colours.length) 

          cnt = 0; 

        $ele.css("color", colours[cnt]); 

        cnt++; 

      }, interval); 

    } 

  }; 

})(jQuery);

Now, run the page once again by calling the plugin method on both
the Panel controls by using the HTML selector. Note that this selector



matches multiple elements:

$("div").rainbow();

The output is shown in the following screenshot. Note that instead of
the animation being applied to the first Panel only, it is incorrectly
applied to both the Panel controls:

This is because of including the .hasClass("sampleText") condition,
which returns the result of the check on the first matched element on
the DOM.

To ensure that the plugin method is applied correctly to all elements,
it is advisable to enclose the method within .each(). Thus, modify
the preceding code to the following code:

(function($) { 

  $.fn.rainbow = function() { 

    this.each(function() { 

      var $ele = $(this); 

      if ($ele.hasClass("sampleText")) { 

        var cnt = 0; 

        var colours = ["violet", "indigo", "blue", 

"green", 

          "yellow", "orange", "red" 

        ]; 

        var interval = 1000; 



        setInterval(function() { 

          if (cnt >= colours.length) 

            cnt = 0; 

          $ele.css("color", colours[cnt]); 

          cnt++; 

        }, interval); 

      } 

    }); 

  }; 

})(jQuery);

As a result, the animation will be applied to the element with the CSS
class sampleText, that is, the first Panel control, as shown in the
following screenshot:

See also
The Providing default values recipe



Providing default values
It is a good practice to provide configurable items in plugin methods
to enable developers to customize according to the requirements of
their application. The use of an options object enables us to achieve
this. A default set of options can also be provided so that developers
can selectively override the configurations that they want.

In this example, let's build the plugin created in the previous recipe
to provide the options object as well as provide a map of default
values.

The constructs used in this example are summarized as follows:

Construct Type Description

$ jQuery
function

This refers to the jQuery
function. $ is an alias for jQuery.

$("#identifier") jQuery
selector

This selects an element based
on its ID.

$(this) jQuery
object

This refers to the current jQuery
object.

$.extend() jQuery
function

This merges the contents of two
or more objects into the first
object.



Construct Type Description

.css() jQuery
method

This gets the style property for
the first matched element or sets
the style property for every
matched element.

.each() jQuery
method

This iterates over the matched
elements and executes a
function for each element.

.hasClass() jQuery
method

This returns true if the specified
CSS class is attached to an
element.

jQuery jQuery
function

This refers to the jQuery
function.

setInterval(function,

delay)

JavaScript
function

This executes a function
repeatedly after the specified
delay in milliseconds.

Getting ready
Follow these steps to create a web form for calling the plugin method
with default values:



1. To keep the code separate from the previous recipe, let's create
another web form named Rainbow-1.1.aspx in the
TestApplication project.

2. Add another plugin by right-clicking on the Scripts folder in the
Solution Explorer tab and navigating to Add | JavaScript File.
name the jquery.rainbow-1.1.js file.

3. Open Rainbow-1.1.aspx in the Source mode and drag and drop
the jQuery library and the plugin on the page in the head element
to generate the following code:

<script src="Scripts/jquery-2.1.4.js">

</script> 

<script src="Scripts/jquery.rainbow-1.1.js">

</script>

4. To style the text on the page, add the following CSS class:
<style type="text/css"> 

.sampleText{ 

  font-family:'Times New Roman', Times, serif; 

  font-size:30px; 

} 

</style>

5. Drag and drop a Panel control on the web form. Add the
preceding CSS class and some random text to it:

<asp:Panel ID="pnlTest" runat="server" 

CssClass="sampleText"> 

  Text inside a Panel control 

</asp:Panel>

How to do it…
Add the following code to the plugin file:

(function($) { 

  $.fn.rainbow = function(opts) { 

    var defaults = { 

      colors: ["violet", "indigo", "blue", 

"green", "yellow", "orange", "red"], 

      interval: 1000 



    }; 

    var options = $.extend(defaults, opts); 

    this.each(function() { 

      var $ele = $(this); 

      var cnt = 0; 

      setInterval(function() { 

        if (cnt >= options.colors.length) 

          cnt = 0; 

        $ele.css("color", options.colors[cnt]); 

        cnt++; 

      }, options.interval); 

    }); 

  }; 

})(jQuery);

Call the plugin from the web form by adding the following code. Note
that we have provided an array of colors as well as an interval in
milliseconds to override the default configuration:

<script type="text/javascript"> 

$(document).ready(function () { 

  $("#<%=pnlTest.ClientID%>").rainbow({ 

    colours: ["red", "blue", "green"], 

    interval: 2000 

  }); 

}); 

</script>

How it works…
The plugin method works as follows:

1. The rainbow()plugin method is updated so that it takes a map
named opts as a parameter:

(function($) { 

    $.fn.rainbow = function(opts) {…} 

  }; 

})(jQuery)

2. A default map is provided to cater for scenarios when none or
some of the configurable values are provided. As shown in the
following code snippet, this plugin has two configurable items,



that is, an array of colors and the interval of switching of
colors:

var defaults = { 

  colors: ["blue", "green", "yellow", 

"orange", "red"], 

  interval:1000 

};

3. Next, merge the defaults and opts maps using the jquery
$.extend() function, as follows:

var options = $.extend(defaults, opts);

Here, the defaults object is modified, and any property that it
shares with the opts object is overwritten. New properties are
added to the defaults object. If the defaults object is blank, the
target object returned will be the same as the opts object.

4. Next, for each calling element, execute a function, as follows:
this.each(function () {…}

Within the preceding function, first of all, get the current
element:

var $ele = $(this);

Set a counter to zero. This counter will keep track of the color
currently being used:

var cnt = 0;

Use the setInterval() function to execute a function at the
interval specified in the options object in step 3. If no interval
is provided by the calling element, it will use the default
interval. Note that the colors are also read from the options
object. If no colors are provided from the calling page, the
default colors are used:



setInterval(function() { 

  if (cnt >= options.colors.length) 

    cnt = 0; 

  $ele.css("color", options.colors[cnt]); 

  cnt++; 

}, options.interval);

There's more…
The plugin method can be called in multiple ways. Since the
parameters are optional, the user may choose to pass none or some
of them selectively, as shown in the following code:

$("#<%=pnlTest.ClientID%>").rainbow();

OR

$("#<%=pnlTest.ClientID%>").rainbow({ 

  colours: ["red", "blue", "green"] 

});

OR

$("#<%=pnlTest.ClientID%>").rainbow({ 

  interval:1000 

});

See also
The Providing method chaining recipe



Providing method chaining
Chaining more than one method is a very useful feature when
programming in jQuery. Chaining is possible since most jQuery
methods return an object allowing the calling of other methods on
the returned object. Since the child methods are executed in the
returned object instead of the entire DOM, the code runs faster. This
allows you to write code, which is not only shorter but also faster.

The plugin that we have worked with so far does not support
chaining. In this example, let's modify the plugin to include this
feature.

The programming constructs used in this example are summarized
as follows:

Construct Type Description

$ jQuery
function

This refers to the jQuery
function. $ is an alias for jQuery.

$("#identifier") jQuery
selector

This selects an element based
on its ID.

$(this) jQuery
object

This refers to the current jQuery
object.



Construct Type Description

$.extend() jQuery
function

This merges the contents of two
or more objects into the first
object.

.addClass() jQuery
method

This adds the specified CSS
class to each matched element.

.css() jQuery
method

This gets the style property for
the first matched element or sets
the style property for every
matched element.

.each() jQuery
method

This iterates over the matched
elements and executes a
function for each element.

.find() jQuery
method

This finds all elements that
match the filter.

.hasClass() jQuery
method

This returns true if the specified
CSS class is attached to an
element.

jQuery jQuery
function

This refers to the jQuery
function.



Construct Type Description

setInterval(function,

delay)

JavaScript
function

This executes a function
repeatedly after the specified
delay in milliseconds.

Getting ready
Follow these steps to create a web page that will use the modified
plugin:

1. In the TestApplication project created earlier, add a new web
form named Rainbow-1.2.aspx.

2. Add a new plugin file by right-clicking on the Scripts folder in
the Solution Explorer tab and navigating to Add | JavaScript
File. name the file jquery.rainbow-1.2.js.

3. Include the jQuery library and the plugin in the form by dragging
and dropping the files on the form to generate the following
markup:

<script src="Scripts/jquery-2.1.4.js">

</script> 

<script src="Scripts/jquery.rainbow-1.2.js">

</script>

4. Go to Toolbox | Standard and add the Panel and Table controls
to the form. Add some random content to the controls to
generate the following markup:

<asp:Panel ID="pnlTest" runat="server" 

CssClass="sampleText"> 

  Text inside a Panel control 

</asp:Panel> 

<br /><br /> 

<asp:Table ID="tblTest" runat="server"> 

  <asp:TableHeaderRow> 



    

<asp:TableHeaderCell>Title</asp:TableHeaderCel

l> 

    

<asp:TableHeaderCell>Author</asp:TableHeaderCe

ll> 

    

<asp:TableHeaderCell>Category</asp:TableHeader

Cell> 

  </asp:TableHeaderRow> 

  <asp:TableRow> 

    <asp:TableCell>The 

Alchemist</asp:TableCell> 

    <asp:TableCell>Paulo 

Coelho</asp:TableCell> 

    <asp:TableCell>Fiction</asp:TableCell> 

  </asp:TableRow> 

  <asp:TableRow> 

    <asp:TableCell>You Can Win</asp:TableCell> 

    <asp:TableCell>Shiv Khera</asp:TableCell> 

    <asp:TableCell>Non-Fiction</asp:TableCell> 

  </asp:TableRow> 

</asp:Table>

5. To style the text in the Panel control, add the following CSS
class:

.sampleText{ 

  font-family:'Times New Roman', Times, serif; 

  font-size:30px; 

}

6. To style the Table control, add the following CSS style to the
table elements:

table, th, td { 

  border: 1px solid black; 

  border-collapse: collapse; 

  padding:5px; 

}

7. To style the table header, include the following style. It will be
added to the table header through the chained code later:

.headerStyle{ 

  font-weight:700; 

  font-variant:small-caps; 



  text-align:center; 

  background-color:lightgray; 

  padding:5px; 

}

How to do it…
Update the plugin as follows:

1. In the jquery.rainbow-1.2.js plugin file, add the following code:
(function($) { 

  $.fn.rainbow = function(opts) { 

    var defaults = { 

      colors: ["violet", "indigo", "blue", 

"green", "yellow", "orange", "red"], 

      interval: 1000 

    }; 

    var options = $.extend(defaults, opts); 

    return this.each(function() { 

      var $ele = $(this); 

      var cnt = 0; 

      setInterval(function() { 

        if (cnt >= options.colors.length) 

          cnt = 0; 

        $ele.css("color", 

options.colors[cnt]); 

        cnt++; 

      }, options.interval); 

    }); 

  }; 

})(jQuery);

2. Call the plugin method on the Panel and Table controls in the
Rainbow-1.2.aspx web form. Add chained methods to the plugin
method to test whether chaining is working as required:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("#<%=pnlTest.ClientID%>").rainbow({ 

    interval: 2000 

  }).css("backgroundColor", "lightyellow"); 

  $("#

<%=tblTest.ClientID%>").rainbow().find("th").a



ddClass(" headerStyle"); 

}); 

</script>

How it works…
The chaining works as follows:

1. For chaining to work, the plugin method needs to return a jQuery
object to the calling code. This is possible by updating the plugin
to add the return keyword, as follows:

return this.each(function () {…});

2. Now, when the rainbow() method is called on the Panel control,
we can chain the .css() method to change the background
color in the following statement:

$("#

<%=pnlTest.ClientID%>").rainbow({interval:2000

}).css("b ackgroundColor","lightyellow");

3. Similarly, when the rainbow() method is called on the Table
control, we can chain the .find() method to only filter the table
header, that is, th rows, and add the CSS class headerStyle to
it, as we did in the following statement:

$("#

<%=tblTest.ClientID%>").rainbow().find("th").a

ddClass(" headerStyle");

Thus, the color transitions and style updates are applied to both
the controls on the form, as shown in the following screenshot:



See also
The Providing default values recipe



Adding actions to plugins
In this example, let's create a plugin that can perform more than one
action by taking in the desired action as an argument. The
programming constructs used in this example are summarized as
follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based
on its ID

$(this) jQuery
object

This refers to the current jQuery
object

$.extend() jQuery
function

This merges the contents of two
or more objects into the first
object

.animate() jQuery
method

This performs a custom
animation on the specified CSS
properties

.css() jQuery
method

This gets the style property for
the first matched element or sets
the style property for every
matched element



Construct Type Description

.each() jQuery
method

This iterates over the matched
elements and executes a
function for each element

setInterval(function,

delay)

JavaScript
function

This executes a function
repeatedly after the specified
delay in milliseconds

Getting ready
Follow these steps to create a web form for calling different actions
on a plugin method:

1. In this recipe, let's create a plugin that can perform different
types of effects on text content. We will focus on three effects:
blink, color transition, and pulsation, as shown in the following
screenshot:



2. To get started, in the TestApplication project, create a new web
form named TextEffects.aspx.

3. Add a new plugin file to the Scripts folder by right-clicking on
the Solution Explorer tab and navigating to Add | JavaScript
File. name the file jquery.texteffects.js.

4. Include the jQuery library and the plugin in the form:
<script src="Scripts/jquery-2.1.4.js">

</script> 

<script src="Scripts/jquery.texteffects.js">

</script>

5. Drag and drop three Label controls from the ToolBox. The
markup is shown as follows:

<asp:Label ID="lblTest1" runat="server" 

Text="This text will blink"></asp:Label><br />

<br /> 

<asp:Label ID="lblTest2" runat="server" 

Text="This text will change colours">

</asp:Label><br /><br /> 

<asp:Label ID="lblTest3" runat="server" 

Text="This text will pulsate"></asp:Label>

6. At runtime, the Label controls are rendered as span elements.
So, to style the Label controls, add the following style to the
page:



span{ 

  font-family:'Times New Roman', Times, serif; 

  font-size:30px; 

}

How to do it…
Update the plugin and the web form as shown below:

1. To the plugin file, add the following code:
(function($) { 

  $.fn.texteffects = function(action, opts) { 

    if (action == "blink") { 

      var defaults = { 

        interval: 1000 

      }; 

      var options = $.extend(defaults, opts); 

      var halfInterval = options.interval / 2; 

      return this.each(function() { 

        var $ele = $(this); 

        setInterval(function() { 

          $ele.animate({ 

            opacity: 0 

          }, halfInterval).animate({ 

            opacity: 1 

          }, halfInterval); 

        }, options.interval); 

      }); 

    } else if (action == "pulsate") { 

      var defaults = { 

        minSize: "20", 

        maxSize: "40", 

        interval: 2000 

      }; 

      var options = $.extend(defaults, opts); 

      var halfInterval = options.interval / 2; 

      return this.each(function() { 

        var $ele = $(this); 

        setInterval(function() { 

          $ele.animate({ 

            fontSize: options.maxSize + "px" 

          }, halfInterval).animate({ 

            fontSize: options.minSize + "px" 

          }, halfInterval); 



        }, options.interval); 

      }); 

    } else if (action == "rainbow") { 

      var defaults = { 

        colors: ["violet", "indigo", "blue", 

"green", "yellow", "orange", "red"], 

        interval: 1000 

      }; 

      var options = $.extend(defaults, opts); 

      return this.each(function() { 

        var $ele = $(this); 

        var cnt = 0; 

        setInterval(function() { 

          if (cnt >= options.colors.length) 

            cnt = 0; 

          $ele.css("color", 

options.colors[cnt]); 

          cnt++; 

        }, options.interval); 

      }); 

    } 

  }; 

})(jQuery);

2. In the TextEffects.aspx web form, call the blink action on the
first Label control:

$("#

<%=lblTest1.ClientID%>").texteffects("blink");

3. Call the rainbow action on the second Label control:
$("#

<%=lblTest2.ClientID%>").texteffects("rainbow"

, { interval: 2000 });

4. Call the pulsate action on the third Label control:
$("#

<%=lblTest3.ClientID%>").texteffects("pulsate"

,{ maxSize: 50, minSize: 30, interval: 3000 

});

How it works…



The calling of different actions on the plugin method works as
follows:

1. The plugin method takes in two parameters: the desired action
and the options map.

2. Three actions have been defined in this plugin: blink, rainbow,
and pulsate. Using the action argument passed to the method,
the respective action can be called, as shown in the following
code snippet:

(function($) { 

  $.fn.texteffects = function(action, opts) { 

    if (action == "blink") { 

      //DEFINE BLINK ACTION HERE 

    } else if (action == "pulsate") { 

      //DEFINE PULSATE ACTION HERE 

    } else if (action == "rainbow") { 

      //DEFINE COLOUR TRANSITIONS HERE 

    } 

  }; 

})(jQuery);

3. Within the blink action, the default value for the blinking
interval is set using a map:

var defaults = { 

  interval: 1000 

};

The default values are merged with the options passed by the
developer from the calling page:

var options = $.extend(defaults, opts);

Within the specified interval, the text will fade out and fade in.
So, a half interval is defined in which the opacity of the text will
be animated to zero. In the remaining half interval, the opacity of
the text will be animated back to unity:

var halfInterval = options.interval / 2;



To enable chaining, we use the return keyword to return a
jQuery object to the calling code, as follows:

return this.each(function () { 

  var $ele = $(this); 

  setInterval(function () { 

    $ele.animate({ opacity: 0 }, 

halfInterval).animate({ opacity: 1 }, 

halfInterval); 

   }, options.interval); 

});

The setInterval() JavaScript function is used to repeat the
process at the specified interval that is read from
options.interval. Two consecutive animations are chained to
the element, as follows:

$ele.animate({ opacity: 0 }, 

halfInterval).animate({ opacity: 1 }, 

halfInterval);

The duration of each animation is set to halfInterval.

4. Within the pulsate action, the default values for the minimum
and maximum font size and the interval of repetition are set
using a map, as follows:

var defaults = { 

  minSize: "20", 

  maxSize: "40", 

  interval: 2000 

};

The default values are merged with the options provided by the
developer from the calling page:

var options = $.extend(defaults, opts);

A half interval is defined. During the first half interval, the font
size is animated so that it increases to the maximum size.



During the second half interval, the font size is animated so that
it reduces to the minimum defined size:

var halfInterval = options.interval / 2;

Next, we use the return keyword to return a jQuery object to the
calling code, as follows:

return this.each(function () { 

  var $ele = $(this); 

  setInterval(function () { 

    $ele.animate({ fontSize: options.maxSize + 

"px" }, halfInterval).animate({ fontSize: 

options.minSize + "px" }, halfInterval); 

  }, options.interval); 

});

Repetition of the animation is possible by the use of the
setInterval() JavaScript function. The process is repeated at
the duration specified by options.interval. Two consecutive
animations are chained to the element, as follows:

$ele.animate({ fontSize: options.maxSize + 

"px" }, halfInterval).animate({ fontSize: 

options.minSize + "px" }, halfInterval);

The duration of each animation is set to halfInterval.

5. Within the rainbow action, we will update the color of the text at
regular intervals. The colors are read from an array. The default
list of colors and the interval of the color switch is defined in
the following map:

var defaults = { 

  colors: ["violet", "indigo", "blue", 

"green", "yellow", "orange", "red"], 

  interval: 1000 

};



The default values are merged with the actual options provided
by the developer from the calling page:

var options = $.extend(defaults, opts);

To enable chaining, we use the return keyword and return a
jQuery object to the calling page, as shown in the following
code:

return this.each(function () { 

  var $ele = $(this); 

  var cnt = 0; 

  setInterval(function () { 

    if (cnt >= options.colors.length) 

      cnt = 0; 

    $ele.css("color", options.colors[cnt]); 

    cnt++; 

  }, options.interval); 

});

The setInterval() JavaScript function is used to switch the
colors at the duration specified by options.interval. The CSS
property, color, of the element is updated and set to the current
color from the array, as follows:

$ele.css("color", options.colors[cnt]);

If we reach the end of the array, the colors are looped, and we
can start once again with the first color in the array:

if (cnt >= options.colors.length) 

  cnt = 0;

Before we begin with the next iteration, the counter is
incremented to retrieve the next color from the array.

See also



The Using the form validation plugin recipe



Using the form validation
plugin
Plugins written by other developers can be searched and
downloaded from the central plugin repository at
https://plugins.jquery.com. On searching for the validation keyword,
we come across the jQuery validation plugin written in 2006 by Jörn
Zaefferer, a member of the core jQuery team. The official site of the
plugin is at http://jqueryvalidation.org.

In this example, let's download and use this plugin in our application.
The programming constructs used in this example are summarized
as follows:

Construct Type Description

$("#identifier") jQuery
selector

This selects an element based
on its ID.

$("html_tag") jQuery
selector

This selects all elements with
the specified HTML tag.

click jQuery
event

This is fired when you click on
an element. It corresponds to
the JavaScript click event.

https://plugins.jquery.com/
http://jqueryvalidation.org/


Construct Type Description

.closest() jQuery
method

For each matched element, this
returns the first element that
matches the selector by
traversing up the DOM tree.

event.preventDefault() jQuery
method

This prevents the default action
of the event from being
triggered.

.hide() jQuery
method

This hides the matched
elements.

.html() jQuery
method

This returns the HTML content
of the first matched element or
sets the HTML content of every
matched element.

.insertAfter() jQuery
method

This inserts the element after
the target.

.on() jQuery
event
binder

This attaches an event handler
for one or more events to the
matched elements.



Construct Type Description

.prop(propertyName) or

.prop(propertyName,

value)

jQuery
method

This returns the value of the
specified property for the first
matched element or sets the
value of the specified property
for all matched elements.

.resetForm() Validation
plugin
method

This resets validations for a
form.

.show() jQuery
method

This displays the matched
elements.

.siblings() jQuery
method

This retrieves the siblings of the
matched elements.

.val() jQuery
method

This returns the value of the first
matched element or sets the
value of every matched
element.

.validate() Validation
plugin
method

This validates a form and
returns a validator object.



Getting ready
To use the validation plugin on a web form, follow these steps:

1. The first step is to download the validation plugin, which can be
obtained in many ways. It can be downloaded from the official
website at http://jqueryvalidation.org. It is also available from
package managers, such as Bower or NuGet. Alternatively, it
can be referenced from CDN.

Note
To download it using Bower, refer to the Downloading
plugins using NPM recipe.

http://jqueryvalidation.org/


2. In the TestApplication project, let's download the plugin from
NuGet. To launch NuGet, in the File menu, go to Tools | NuGet
Package Manager | Manage NuGet Packages for Solution. In
the NuGet screen, as shown in the following screenshot, search
for jquery validation. Select jQuery.Validation, and click on
the Install button:



When the installation completes, you will notice that the
following files are added to the Scripts folder:

3. Add a new web form to the project and name it
FormValidation.aspx. Include the jQuery library and validation
plugin in the form, as follows:

<script src="Scripts/jquery-2.1.4.js">

</script> 

<script src="Scripts/jquery.validate.js">

</script>

4. Create a registration form that accepts different types of data,
such as the text, e-mail, password, and so on, as shown in the
following screenshot:



Use the following markup to create the form:

<form id="frmRegistration" runat="server"> 

  <h2>Registration Form</h2> 

  <div id="summary"></div> 

  <br /> 

  <table> 

    <tr> 

      <td> 

        <asp:Label ID="lblName" runat="server" 

Text="Name"></asp:Label><span 

class="mandatory">*</span></td> 

      <td> 

        <asp:TextBox ID="txtName" 

runat="server"></asp:TextBox> 

      </td> 

    </tr> 

    <tr> 

      <td> 

        <asp:Label ID="lblEmail" 

runat="server" Text="Email"></asp:Label><span 

class="mandatory">*</span></td> 



      <td> 

        <asp:TextBox ID="txtEmail" 

runat="server"></asp:TextBox> 

      </td> 

    </tr> 

    <tr> 

      <td> 

        <asp:Label ID="lblPassword" 

runat="server" Text="Password"></asp:Label>

<span class="mandatory">*</span></td> 

      <td> 

        <asp:TextBox ID="txtPassword" 

runat="server" TextMode="Password">

</asp:TextBox> 

      </td> 

    </tr> 

    <tr> 

      <td> 

        <asp:Label ID="lblConfirmPassword" 

runat="server" Text="Confirm Password">

</asp:Label><span class="mandatory">*</span>

</td> 

      <td> 

        <asp:TextBox ID="txtConfirmPassword" 

runat="server" TextMode="Password">

</asp:TextBox> 

      </td> 

    </tr> 

    <tr> 

      <td> 

        <asp:Label ID="lblDOB" runat="server" 

Text="Date of Birth"></asp:Label> 

      </td> 

      <td> 

        <asp:TextBox ID="txtDOB" 

runat="server"></asp:TextBox> 

      </td> 

    </tr> 

    <tr> 

      <td> 

        <asp:Label ID="lblMailAddr" 

runat="server" Text="Mailing Address">

</asp:Label> 

      </td> 

      <td> 

        <asp:TextBox ID="txtMailAddr" 

runat="server"></asp:TextBox> 

      </td> 



    </tr> 

    <tr> 

      <td> 

        <asp:Label ID="lblPostal" 

runat="server" Text="Postal Code"></asp:Label> 

      </td> 

      <td> 

        <asp:TextBox ID="txtPostal" 

runat="server"></asp:TextBox> 

      </td> 

    </tr> 

    <tr> 

      <td> 

        <asp:Label ID="lblUrl" runat="server" 

Text="URL"></asp:Label> 

      </td> 

      <td> 

        <asp:TextBox ID="txtUrl" 

runat="server"></asp:TextBox> 

      </td> 

    </tr> 

    <tr> 

      <td colspan="2" class="center"> 

        <asp:CheckBox ID="chkAgree" 

runat="server" /> 

        <asp:Label ID="lblAgree" 

runat="server" Text="I agree to the terms and 

conditions"></asp:Label> 

      </td> 

    </tr> 

    <tr> 

      <td colspan="2" class="center"> 

        <asp:Button ID="btnSubmit" 

runat="server" Text="Submit" /> 

        <asp:Button ID="btnReset" 

runat="server" Text="Reset" /> 

      </td> 

    </tr> 

  </table> 

</form>

5. Add the following styles to the form:
.mandatory{ 

  color:red; 

} 

.center{ 



  text-align:center; 

}

6. After validating the form, the validation plugin generates error
messages in label elements with the CSS class, error. To
customize the style of the error messages, we can add our own
styles, as follows:

label.error { 

  color: red; 

  padding-left:5px; 

}

7. The form provides a div element on the top to display the total
number of invalid elements. Let's add the following style to this
element:

#summary{ 

  text-align:center; 

  border:solid; 

  border-width:1px; 

  background-color:lavender; 

  width:400px; 

  height:20px; 

}

How to do it…
Add the following jQuery code to a <script> block on the form:

<script type="text/javascript"> 

$(document).ready(function() { 

  $("#summary").hide(); 

  $("#<%=btnSubmit.ClientID%>").on("click", 

function() { 

    var validator = 

$("#frmRegistration").validate({ 

      rules: { 

        <%=txtName.ClientID%>: "required", 

        <%=txtEmail.ClientID%>: { 

          required: true, 

          email: true 

        }, 



        <%=txtPassword.ClientID%>: { 

          required: true, 

          minlength: 8 

        }, 

        <%=txtConfirmPassword.ClientID%>: { 

          required: true, 

          minlength: 8, 

          equalTo: "#<%=txtPassword.ClientID%>" 

        }, 

        <%=txtDOB.ClientID%>: { 

          date: true 

        }, 

        <%=txtMailAddr.ClientID%>: { 

          maxlength: 200 

        }, 

        <%=txtPostal.ClientID%>: { 

          digits: true 

        }, 

        <%=txtUrl.ClientID%>: { 

          url: true 

        }, 

        <%=chkAgree.ClientID%>: "required" 

      }, 

      messages: { 

        <%=txtName.ClientID%>: "Please enter your 

Name", 

        <%=txtEmail.ClientID%>: { 

          required: "Please enter your Email", 

          email: "Please enter a valid Email 

address" 

        }, 

        <%=txtPassword.ClientID%>: { 

          required: "Please enter your Password", 

          minlength: "Password should be at least 

8 characters long" 

        }, 

        <%=txtConfirmPassword.ClientID%>: { 

          required: "Please confirm your 

Password", 

          minlength: "Password should be at least 

8 characters long", 

          equalTo: "Your entered passwords do not 

match" 

        }, 

        <%=txtDOB.ClientID%>: "Enter a valid 

date", 

        <%=txtMailAddr.ClientID%>: "Your address 

exceeds 200 characters", 



        <%=txtPostal.ClientID%>: "Please enter 

only digits", 

        <%=txtUrl.ClientID%>: "Please enter a 

valid Url", 

        <%=chkAgree.ClientID%>: "Please accept the 

terms and conditions to proceed" 

      }, 

      errorPlacement: function(error, element) { 

        if (element.prop("id") == "

<%=chkAgree.ClientID%>") 

error.insertAfter(element.siblings("#

<%=lblAgree.ClientID%>")); 

        else 

          error.insertAfter(element); 

      }, 

      invalidHandler: function() { 

        $("#summary").html("Please correct the " + 

validator.numberOfInvalids() + " invalid field(s) 

on the form.").show(); 

      } 

    }); 

  }); 

  $("#<%=btnReset.ClientID%>").on("click", 

function(evt) { 

    evt.preventDefault(); 

    $("#summary").hide(); 

    $("input[type=text]").val(""); 

    $("input[type=password]").val(""); 

    $("input[type=checkbox]").prop("checked", 

false); 

    $("#frmRegistration").validate().resetForm(); 

  }); 

}); 

</script>

How it works…
The validation plugin works as described below:

1. On running the page in the browser, if the Submit button is
clicked without entering any data into the fields, we will see that
the following error messages are displayed for invalid fields
along with a summary on the top:



2. When data is entered in the form, you will notice that the error
messages will get updated to give you more specific details
about the invalid fields, as shown in the following screenshot:



When you click on the Reset button, it clears all fields and error
messages.

3. To validate the fields, we call the validate() method on the form
when you click on the Submit button:

$("#<%=btnSubmit.ClientID%>").on("click", 

function () { 

var validator = 

$("#frmRegistration").validate({…});

The validate() method takes a number of options. We will
make use of the following options:

rules: This consists of key/value pairs that are used to
validate the controls on the form.
messages: This consists of key/value pairs that are used to
define custom error messages.
errorPlacement: This executes a function that is used to
customize the placement of error messages. The first



argument of the function is the error label, which is
provided as a jQuery object, and the second argument is
the invalid element, which is provided as a jQuery object.
invalidHandler: This executes a callback function when
the form is marked as invalid.

var validator = 

$("#frmRegistration").validate({ 

  rules: { 

  }, 

  messages: { 

  }, 

  errorPlacement: function(error, 

element) { 

  }, 

  invalidHandler: function() { 

  } 

});

These preceding options are applied to the validate() method
in the following manner:

4. The rules option takes in the following name/value pairs to list
the validation rules:

The Name field is mandatory:
<%=txtName.ClientID%>: "required",

The Email field is mandatory and should have a valid email:
<%=txtEmail.ClientID%>: { required: true, 

email: true },

The Password field is mandatory and the length of the
entered password should be at least 8 characters:

<%=txtPassword.ClientID%>: { required: 

true, minlength: 8 }

The Confirm Password field is also mandatory and the
length of the entered password should be at least 8



characters. More importantly, the data entered should
match the Password field:

<%=txtConfirmPassword.ClientID%>: { 

required: true, minlength: 8 , equalTo: 

"#<%=txtPassword.ClientID%>"},

The Date of Birth field should have a valid date:
<%=txtDOB.ClientID%>: { date: true },

The maximum length of text entered in the Mailing
Address field is 200 characters:

<%=txtMailAddr.ClientID%>: { maxlength: 

200 },

The Postal Code field should have only digits:
<%=txtPostal.ClientID%>: { digits: true 

},

The URL field should have a valid URL:
<%=txtUrl.ClientID%>: { url: true },

The terms and conditions should be agreed upon, that is,
the checkbox is required to be checked:

<%=chkAgree.ClientID%>:"required"

5. For the preceding rules, define the corresponding error
messages. These error messages will override the default error
messages provided by the validation plugin:

The Name field:
<%=txtName.ClientID%>: "Please enter your 

Name",

The Email field:
<%=txtEmail.ClientID%>: {required: 

"Please enter your Email", 



 email: "Please enter a valid 

Email address"},

The Password field:
<%=txtPassword.ClientID%>: {required: 

"Please enter your Password", 

 minlength:"Password should be at 

least 8 characters long"},

The Confirm Password field:
<%=txtConfirmPassword.ClientID%>: 

{required: "Please confirm your 

Password", minlength:"Password should be 

at least 8 characters long", equalTo: 

"Your entered passwords do not match" 

},

The Date of Birth field:
<%=txtDOB.ClientID%>: "Enter a valid 

date",

The Mailing Address field:
<%=txtMailAddr.ClientID%>: "Your address 

exceeds 200 characters",

The Postal Code field:
<%=txtPostal.ClientID%>: "Please enter 

only digits",

The URL field:
<%=txtUrl.ClientID%>: "Please enter a 

valid Url",

The terms and conditions checkbox:
<%=chkAgree.ClientID%>:"Please accept the 

terms and conditions to proceed"

6. Each of the preceding error messages are displayed next to the
respective invalid element. To override this default placement,



we can attach a function to the errorPlacement option. Let's do
this for the checkbox since we want to display the error
message after the label I agree to the terms and conditions
instead of next to the checkbox element. This can be done as
follows:

errorPlacement: function(error, element){ 

if (element.prop("id") == "

<%=chkAgree.ClientID%>") 

   error.insertAfter(element.siblings("#

<%=lblAgree.ClientID%>")); 

else 

  error.insertAfter(element); 

},

Thus, if the element is chkAgree, the error label is inserted after
the lblAgree element.

7. Lastly, execute a callback function when the form is marked as
invalid. This callback function will display the total number of
invalid fields on the form:

invalidHandler: function () { 

  $("#summary").html("Please correct the " + 

validator.numberOfInvalids() + " invalid 

field(s) on the form.").show(); 

}

The preceding error message is displayed in the summary div at
the top of the form.

8. When you click on the Reset button, first of all the posting of the
form is prevented:

evt.preventDefault();

The div used to display the validation summary is hidden:

$("#summary").hide();



Next, all the form fields are emptied/reset:

$("input[type=text]").val(""); 

$("input[type=password]").val(""); 

$("input[type=checkbox]").prop("checked",false

);

The resetForm() method is called on the validator object
returned by the validate() method so that all the validations are
reset:

$("#frmRegistration").validate().resetForm();

There's more…
Let's say we have a group of controls that we would like to validate
together. For example, a Phone field can be used to enter a Hand
Phone, Work Phone, or Home Phone, as shown in the following
diagram:

If we need to validate these three fields in such a way that at least
one phone number is entered, use the require_from_group method
provided by the validation plugin. This method is available in the
additional-methods.js file that is available in the distribution and can
be downloaded from http://jqueryvalidation.org.

To validate the Phone field, follow these steps:

1. Download the additional-methods.js file from
http://jqueryvalidation.org and include it in the Scripts folder in
the project. Include this file in the form:

<script src="Scripts/additional-methods.js">

</script>

http://jqueryvalidation.org/
http://jqueryvalidation.org/


2. Add the markup for the Phone fields on the form:
<tr> 

  <td> 

    <asp:Label ID="lblPhone" runat="server" 

Text="Phone (provide at least one)">

</asp:Label><span class="mandatory">*</span>

</td> 

  <td> 

    <table> 

      <tr> 

        <td> 

          <asp:Label ID="lblHandphone" 

runat="server" Text="Hand Phone">

</asp:Label>&nbsp; 

          <asp:TextBox ID="txtHandphone" 

CssClass="phonegroup" runat="server">

</asp:TextBox> 

        </td> 

        <td> 

          <asp:Label ID="lblWorkphone" 

runat="server" Text="Work Phone">

</asp:Label>&nbsp; 

          <asp:TextBox ID="txtWorkphone" 

CssClass="phonegroup" runat="server">

</asp:TextBox> 

        </td> 

        <td> 

          <asp:Label ID="lblHomephone" 

runat="server" Text="Home Phone">

</asp:Label>&nbsp; 

          <asp:TextBox ID="txtHomephone" 

CssClass="phonegroup" runat="server">

</asp:TextBox> 

        </td> 

      </tr> 

    </table> 

  </td> 

</tr>

3. Note that the TextBox controls in the group are assigned the
same CSS class, phonegroup.

4. In the validate() method, add the following rules:
<%=txtHandphone.ClientID%>: 

{require_from_group: [1, ".phonegroup"], 

phoneUS: true}, 



<%=txtWorkphone.ClientID%>: 

{require_from_group:[1, ".phonegroup"], 

phoneUS: true}, 

<%=txtHomephone.ClientID%>: 

{require_from_group:[1,".phonegroup"], 

phoneUS: true},

The require_from_group method requires the following two
options:

Option 1: Number of fields that are required to be filled in a
group
Option 2: CSS selector for the group

It also indicates that the fields are phone fields by setting
phoneUs to true.

5. Add the corresponding error messages:
<%=txtHandphone.ClientID%>: {phoneUS: "Please 

enter a correct phone number"}, 

<%=txtWorkphone.ClientID%>: {phoneUS: "Please 

enter a correct phone number"}, 

<%=txtHomephone.ClientID%>:{phoneUS: "Please 

enter a correct phone number"},

6. To display a common message for all the three controls, we use
the groups option of the validate() method:

groups: { 

phoneFields: "

<%=String.Concat(txtHandphone.ClientID, " ")%>

<%=String.Concat(txtWorkphone.ClientID, " ")%>

<%=txtHomephone.ClientID%>" 

},

In the preceding code snippet, we have assigned an arbitrary
name, that is, phoneFields to the group. The value assigned to
the field is a space-separated list of controls in the group. At
runtime, phoneFields will be evaluated to the following string:



phoneFields: "txtHandphone txtWorkphone 

txtHomephone"

7. The errorPlacement option is also updated in order to display
the error for this group at a suitable location. Here, the error
label is attached to the parent container table:

errorPlacement: function(error, element) { 

  if ((element.prop("id") == "

<%=txtHandphone.ClientID%>") || 

(element.prop("id") == "

<%=txtWorkphone.ClientID%>") || 

(element.prop("id") == "

<%=txtHomephone.ClientID%>")) 

    

error.insertAfter(element.closest("table")); 

  else if (element.prop("id") == "

<%=chkAgree.ClientID%>") 

    error.insertAfter(element.siblings("#

<%=lblAgree.ClientID%>")); 

  else 

    error.insertAfter(element); 

}

8. Thus, on validation, a common error message is displayed for
the three controls:

9. On entering incorrect data into any of the phone fields, the error
message will change to the following:

See also
The Downloading plugins using the NPM recipe



Downloading plugins using the
NPM
Since the jQuery plugin repository is now in read-only mode, it is
recommended that you use NPM (Node Package Manager) to
manage plugins. In this recipe, we will download the jQuery
validation plugin using NPM and Bower.

Note
Bower is a browser package manager. It is optimized to manage
frontend packages. However, to use Bower, you need to install
Node.js and NPM. Some bower packages also require Git to be
installed.

Getting ready
Bower can be set up as follows:

1. The first step is to install Node.js and NPM on your machine.
Node.js is available at https://nodejs.org. On the home page,
click on the Download link to download the required version:

https://nodejs.org/


2. After completing the installation, test it using the following
commands in a terminal window (for example, cmd on a
Windows machine):

node –v

npm -v

3. Next, download the installer for Git from http://git-scm.com. Run
and complete the installation.

4. Next, install Bower as a global node module. To do this, open
the terminal window and enter the following command:

npm install –g bower

How to do it…
Now that we have all the required software installed, you can install
the jQuery validation plugin using Bower by entering the following
command in the terminal window:

bower install jquery-validation

http://git-scm.com/


The terminal window will display the following installation messages:

How it works…
1. Bower creates a bower_components folder on the machine and

downloads the plugin and its dependencies, that is, the jQuery
library, in this folder.

2. After going to the jquery-validation folder, we can see the
downloaded files:



3. The validation plugin files can be found in the distribution folder,
that is, bower_components/jquery-validation/dist, as shown in
the following screenshot:

See also
The Using the form validatio n plugin recipe



Index
A

$ alias

used, in plugin / Using the $ alias in the plugin, How to do
it…, There's more

actions

adding, to plugins / Adding actions to plugins, Getting
ready, How to do it…, How it works…

AdRotator control

alt text, animating of / Animating the alt text of the
AdRotator control, Getting ready, How it works…, There's
more…

AJAX

using / How it works…
about / Introduction

Ajax

defining / Introduction
setting up with ASP.NET, jQuery used / Setting up Ajax with
ASP.NET using jQuery, Getting ready, How it works…,
There's more…

Ajax calls

making, to controller action / Making Ajax calls to a
controller action, Getting ready, How it works…



making, to HTTP handler / Making Ajax calls to a HTTP
handler, Getting ready, How it works…

alt text

animating, of AdRotator control / Animating the alt text of
the AdRotator control, Getting ready, How it works…,
There's more…

anonymous function

about / Introduction

Application Programming Interface (API) / How to do it…

about / Introduction

ASP.NET controls

defining / Introduction
selecting / Getting ready

ASP.NET Master Page

jQuery, adding / Adding jQuery to an ASP.NET Master Page
, Getting ready, How to do it…, How it works…

ASP.NET MVC

jQuery, bundling / Bundling jQuery in ASP.NET MVC,
Getting ready, How to do it…, How it works…, See also
jQuery, loading with CDN / Using CDN to load jQuery in
MVC, How it works…
Hello World, displaying with jQuery / Hello World in
ASP.NET MVC using jQuery, See also

ASP.NET web project



jQuery, adding with script block / Adding jQuery to an empty
ASP.NET web project using a script block, Getting ready,
How to do it…, See also
jQuery, adding with ScriptManager control / Adding jQuery
to an empty ASP.NET web project using ScriptManager
control, How to do it…, How it works…

C
CDN

about / Understanding CDN for jQuery
list / How to do it…
jQuery’s CDN / How to do it…
Google CDN / How to do it…
Microsoft CDN / How to do it…
JS CDN / How to do it…
jsDelivr CDN / How to do it…
using, for new releases / Using CDNs for new releases
working / How it works…
used, for loading jQuery in ASP.NET MVC / Getting ready,
How it works…

CDNJS CDN

URLs / How to do it…

constructs

defining / Selecting a control using ID and displaying its
value, Selecting a control using the CSS class, Selecting a
control using HTML tag
using / Selecting a control by its attribute, Selecting an
element by its position in the DOM, Enabling/disabling
controls on a web form, Using selectors in MVC
applications, Animating a Label control to create a digital
clock, Creating a spotlight effect on images, Using images



to create effects in the Menu control, Calling methods on
DOM elements, Providing default values
used, for mouse events / Responding to mouse events
used, for keyboard events / Responding to keyboard events
used, for form events / Responding to form events
used, for event delegation and event bubbling / Using event
delegation to attach events to future controls
used, for event handlers / Running an event only once
used, for event trigger / Triggering an event
programmatically
used, for namespacing / Passing data with events and
using event namespacing
used, for detaching events / Detaching events
used, for parent and child controls / Accessing parent and
child controls
used, for sibling controls / Accessing sibling controls
used, for filter / Refining selection using a filter
used, for adding items / Adding items to controls at runtime
used, for Menu control / Animating the Menu control
used, for AdRotator control / Animating the alt text of the
AdRotator control
used, in TreeView control / Animating images in the
TreeView control
used, in Panel control / Creating scrolling text in a Panel
control, Creating a vertical accordion menu using Panel
controls
used, in GridView control / Showing/hiding the GridView
control with the explode effect
used, for zooming images on mouseover / Zooming images
on mouseover
used, for creating image scroller / Creating an image
scroller
used, for z-index CSS property / Building a photo gallery
using z-index property
used, for building photo gallery / Building a photo gallery
using ImageMap control



used, for creating 5 star rating control / Creating a 5 star
rating control
used, for previewing image uploads / Previewing image
uploads in MVC
used, for setting up Ajax with ASP.NET / Setting up Ajax
with ASP.NET using jQuery
used, for consuming page methods / Consuming page
methods
used, for consuming Web services / Consuming Web
services
used, for consuming WCF services / Consuming WCF
services
used, for retrieving data from Web API / Retrieving data
from a Web API
used, for controller action / Making Ajax calls to a controller
action
used, for HTTP handler / Making Ajax calls to a HTTP
handler
used, for plugin / Creating and using a simple plugin, Using
the $ alias in the plugin

control

selecting, ID used / Selecting a control using ID and
displaying its value, Getting ready, How to do it…, How it
works…
value, displaying / Selecting a control using ID and
displaying its value, Getting ready, How to do it…, How it
works…
selecting, CSS class used / Selecting a control using the
CSS class, Getting ready, How to do it…, How it works…
selecting, HTML tag used / Selecting a control using HTML
tag, Getting ready, How it works…
selecting, by attribute / Selecting a control by its attribute,
Getting ready, How it works…

controller action



Ajax calls, making to / Making Ajax calls to a controller
action, Getting ready, How it works…

controls

enabling, on web form / Enabling/disabling controls on a
web form, Getting ready, How to do it…, How it works…
disabling, on web form / Enabling/disabling controls on a
web form, Getting ready, How to do it…, How it works…

CSS class

used, for selecting control / Selecting a control using the
CSS class, Getting ready, How to do it…, How it works…

D
data

passing, with events / Passing data with events and using
event namespacing, Getting ready, How it works…, See
also
retrieving, from Web API / Retrieving data from a Web API,
Getting ready, How it works…

default values

providing / Providing default values, Getting ready, How to
do it…, How it works…, There's more…

default web application template

jQuery reference, adding / Understanding jQuery reference
in the default web application template, How to do it..., How
it works…

development/debug mode



application, running / How it works…

digital clock

creating, via animating Label control / Animating a Label
control to create a digital clock, Getting ready, How it
works…

Document Object Model (DOM)

about / Introduction

DOM elements

adding / Adding/removing DOM elements, Getting ready,
How it works…
removing / Adding/removing DOM elements, Getting ready,
How it works…
methods, calling on / Calling methods on DOM elements,
Getting ready, How to do it…, How it works…, There's
more…

E
edge servers / How it works…
element

selecting, by its position in DOM / Selecting an element by
its position in the DOM, Getting ready, How it works…

event

binding / Introduction
running only once / Running an event only once, Getting
ready, How to do it…, How it works…
triggering, programmatically / Triggering an event
programmatically, Getting ready, How to do it…



event bubbling

about / Introduction

event delegation

about / Introduction
used, for attaching events to future controls / Using event
delegation to attach events to future controls, Getting ready,
How it works…

event handler

about / Introduction

event namespacing

using / Passing data with events and using event
namespacing, Getting ready, How to do it…, How it
works…

events

detaching / Detaching events, Getting ready, How to do
it…, How it works…

F
filter

used, for refining selection / Refining selection using a filter,
Getting ready, How it works…

form events

responding to / Responding to form events, Getting ready,
How it works…



form validation plugin

using / Using the form validation plugin, Getting ready, How
it works…, There's more…

G
Git

about / Downloading plugins using the NPM
URL / Getting ready

Google CDN

URLs / How to do it…

GridView control

displaying, with explode effect / Showing/hiding the
GridView control with the explode effect, Getting ready,
How it works…
hiding, with explode effect / Showing/hiding the GridView
control with the explode effect, Getting ready, How it
works…

H
Hello World

displaying, in web project with jQuery / Hello World in a web
project using jQuery, Getting ready, How it works…
displaying, in ASP.NET MVC with jQuery / Hello World in
ASP.NET MVC using jQuery, See also

HTML tag



used, for selecting control / Selecting a control using HTML
tag, Getting ready, How it works…

HTTP handler

Ajax calls, making to / Making Ajax calls to a HTTP handler,
Getting ready, How it works…

I
ImageMap control

used, for building photo gallery / Building a photo gallery
using ImageMap control, Getting ready, How to do it…,
How it works…

images

animating, in TreeView control / Animating images in the
TreeView control, Getting ready, How it works…, There's
more…
spotlight effect, creating on / Creating a spotlight effect on
images, Getting ready, How it works…
zooming, on mouseover / Zooming images on mouseover,
Getting ready, How to do it…, How it works…
used, for creating effects in Menu control / Using images to
create effects in the Menu control, Getting ready, How to do
it…, How it works…

image scroller

creating / Creating an image scroller, Getting ready, How it
works…

image uploads

previewing, in MVC / Previewing image uploads in MVC,
Getting ready, How it works…



items

adding, to controls at runtime / Adding items to controls at
runtime, Getting ready, How it works…

J
JavaScript Object Notation (JSON) format

about / Passing data with events and using event
namespacing

jQuery

about / Introduction, Introduction, Introduction, Introduction
disadvantages / Introduction
downloading / Downloading jQuery from jQuery.com,
Getting ready, How to do it…
URL, for download / Getting ready
CDN / Understanding CDN for jQuery
downloading, NuGet Package Manager used / Using NuGet
Package Manager to download jQuery, Getting ready, How
to do it…, How it works…
adding, to ASP.NET web project with script block / Adding
jQuery to an empty ASP.NET web project using a script
block, Getting ready, How to do it…, See also
adding, to ASP.NET web project with ScriptManager control
/ Adding jQuery to an empty ASP.NET web project using
ScriptManager control, How to do it…, How it works…
adding, to ASP.NET Master Page / Adding jQuery to an
ASP.NET Master Page , Getting ready, How to do it…, How
it works…
adding, programmatically to web form / Adding jQuery
programmatically to a web form, How it works…
used, for displaying Hello World in web project / Hello World
in a web project using jQuery, Getting ready, How it
works…



bundling, in ASP.NET MVC / Bundling jQuery in ASP.NET
MVC, Getting ready, How to do it…, See also
used, for displaying Hello World in ASP.NET MVC / Hello
World in ASP.NET MVC using jQuery, See also
elements, displaying / Introduction
elements, hiding / Introduction
elements, fading / Introduction
elements, sliding / Introduction
custom effects / Introduction
animations, stopping / Introduction
using / Introduction
used, for setting up Ajax with ASP.NET / Setting up Ajax
with ASP.NET using jQuery, Getting ready, How it works…,
There's more…

jQuery, ASP.NET MVC

loading, CDN used / Using CDN to load jQuery in MVC,
How it works…

jQuery code

debugging, in Visual Studio / Debugging jQuery code in
Visual Studio, How to do it…

jQuery event binders

defining / jQuery event binders

jQuery events

URL / Introduction

jQuery library

uncompressed format / How to do it…
compressed format / How to do it…
methods, defining / Introduction



jQuery reference

adding, in default web application template / Understanding
jQuery reference in the default web application template,
How to do it..., How it works…

jQuery selectors

defining / Introduction
basic selectors / Introduction
hierarchy selectors / Introduction
attribute selectors / Introduction
form selectors / Introduction
position filters / Introduction
URL / Introduction

jQuery UI

URL / There's more…

jQuery UI style sheet

URL / Getting ready

jQuery validation plugin

URL / Using the form validation plugin, Getting ready
references / There's more…

jQuery’s CDN

URLs / How to do it…

jsDelivr CDN

URLs / How to do it…

JSON (JavaScript Object Notation)



about / Introduction

K
keyboard events

responding to / Responding to keyboard events, Getting
ready, How it works…

L
Label control

animating, for creating digital clock / Animating a Label
control to create a digital clock, Getting ready, How it
works…

M
Menu control

animating / Animating the Menu control, Getting ready, How
to do it…, How it works…
effects creating, images used / Using images to create
effects in the Menu control, Getting ready, How to do it…,
How it works…

method chaining

providing / Providing method chaining, Getting ready, How
to do it…, How it works…

methods

calling, on DOM elements / Calling methods on DOM
elements, Getting ready, How to do it…, How it works…,



There's more…

Microsoft CDN

URLs / How to do it…

minified version / How to do it…
Model View Controller (MVC) / Bundling jQuery in ASP.NET
MVC
mouse events

responding to / Responding to mouse events, Getting
ready, How to do it…, How it works…

MVC

image uploads, previewing / Previewing image uploads in
MVC, Getting ready, How it works…

MVC applications

selectors, using / Using selectors in MVC applications,
Getting ready, How to do it…, How it works…

N
node

defining / Getting ready

Node.js

about / Downloading plugins using the NPM
URL / Getting ready

Northwind

URL / Getting ready



Northwind database

installing / Getting ready
about / Getting ready
URL / Getting ready

NPM

used, for downloading plugins / Downloading plugins using
the NPM, How to do it…, How it works…

NPM (Node Package Manager)

about / Introduction, Downloading plugins using the NPM

NuGet Package Manager

used, for downloading jQuery / Using NuGet Package
Manager to download jQuery, How to do it…, How it
works…

P
page methods

consuming / Consuming page methods, Getting ready, How
to do it…, How it works…

Panel control

scrolling text, creating / Creating scrolling text in a Panel
control, Getting ready, How to do it…, How it works…
used, for creating vertical accordion menu / Creating a
vertical accordion menu using Panel controls, Getting
ready, How it works…

parent and child controls



accessing / Accessing parent and child controls, Getting
ready, How to do it…, How it works…

photo gallery

building, z-index property used / Building a photo gallery
using z-index property, Getting ready, How to do it…, How
it works…
building, ImageMap control used / Building a photo gallery
using ImageMap control, Getting ready, How to do it…,
How it works…

plugin

creating / Creating and using a simple plugin, How to do
it…
using / Creating and using a simple plugin, How to do it…
$ alias, using / Using the $ alias in the plugin, How to do
it…, There's more

plugin repository

URL / Introduction, Using the form validation plugin

plugins

actions, adding to / Adding actions to plugins, Getting
ready, How to do it…, How it works…
downloading, NPM used / Downloading plugins using the
NPM, How to do it…, How it works…

position, in DOM

selecting / Selecting an element by its position in the DOM,
Getting ready, How it works…

programming constructs

defining / Adding/removing DOM elements



used, in method chaining / Providing method chaining
using / Adding actions to plugins
used, in form validation plugin / Using the form validation
plugin

S
5 star rating control

creating / Creating a 5 star rating control, Getting ready,
How it works…, There's more…

sample databases

URL / Getting ready

script block

used, for adding jQuery to ASP.NET web project / Adding
jQuery to an empty ASP.NET web project using a script
block, Getting ready, How to do it…, See also

ScriptManager control

used, for adding jQuery to ASP.NET web project / Adding
jQuery to an empty ASP.NET web project using
ScriptManager control, How to do it…, How it works…

ScriptResourceDefinition object

Path property / How it works…
DebugPath property / How it works…
CdnPath property / How it works…
CdnDebugPath property / How it works…
CdnSupportsSecureConnection property / How it works…
LoadSuccessExpression property / How it works…

scrolling text



creating, in Panel control / Creating scrolling text in a Panel
control, Getting ready, How to do it…, How it works…

selection

refining, filter used / Refining selection using a filter, Getting
ready, How it works…

selector

about / Introduction

selectors

using, in MVC applications / Using selectors in MVC
applications, Getting ready, How to do it…, How it works…

sibling controls

accessing / Accessing sibling controls, Getting ready, How
to do it…, How it works…, There's more…

spotlight effect

creating, on images / Creating a spotlight effect on images,
Getting ready, How it works…

T
TreeView control

images, animating / Animating images in the TreeView
control, Getting ready, How it works…, There's more…

V
validate() method



options / How it works…

vertical accordion menu

creating, Panel controls used / Creating a vertical accordion
menu using Panel controls, Getting ready, How it works…

Visual Studio

jQuery code, debugging / Debugging jQuery code in Visual
Studio, Getting ready, How to do it…

W
WCF services

consuming / Consuming WCF services, Getting ready, How
it works…

Web API

about / Retrieving data from a Web API
data, retrieving from / Retrieving data from a Web API,
Getting ready, How it works…

web form

jQuery, adding programmatically / Adding jQuery
programmatically to a web form, How it works…
controls, enabling / Enabling/disabling controls on a web
form, Getting ready, How to do it…, How it works…
controls, disabling / Enabling/disabling controls on a web
form, Getting ready, How to do it…, How it works…

web page

about / Introduction



web project

Hello World, displaying with jQuery / Hello World in a web
project using jQuery, Getting ready, How it works…

Web services

consuming / Consuming Web services, Getting ready, How
it works…

wiring

about / Introduction

X
XmlHttpRequest object

about / Introduction

Z
z-index property

used, for building photo gallery / Building a photo gallery
using z-index property, Getting ready, How to do it…, How
it works…


	ASP.NET jQuery Cookbook Second Edition
	Table of Contents
	ASP.NET jQuery Cookbook Second Edition
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions


	1. Getting Started with jQuery in ASP.NET
	Introduction
	Downloading jQuery from jQuery.com
	Getting ready
	How to do it…
	See also…

	Understanding CDN for jQuery
	How to do it…
	Using CDNs for new releases

	How it works…
	See also

	Using NuGet Package Manager to download jQuery
	Getting ready
	How to do it…
	How it works…
	See also

	Adding jQuery to an empty ASP.NET web project using a script block
	Getting ready
	How to do it…
	See also

	Adding jQuery to an empty ASP.NET web project using ScriptManager control
	Getting ready
	How to do it…
	How it works…
	See also

	Adding jQuery to an ASP.NET Master Page
	Getting ready
	How to do it…
	How it works…
	See also

	Adding jQuery programmatically to a web form
	Getting ready
	How to do it…
	How it works…
	See also

	Understanding jQuery reference in the default web application template
	How to do it...
	How it works…
	See also

	Hello World in a web project using jQuery
	Getting ready
	How to do it…
	How it works…
	See also

	Bundling jQuery in ASP.NET MVC
	Getting ready
	How to do it…
	How it works…
	See also

	Using CDN to load jQuery in MVC
	Getting ready
	How to do it…
	How it works…
	See also

	Hello World in ASP.NET MVC using jQuery
	Getting ready
	How to do it…
	How it works…
	See also

	Debugging jQuery code in Visual Studio
	Getting ready
	How to do it…
	See also


	2. Using jQuery Selectors with ASP.NET Controls
	Introduction
	Selecting a control using ID and displaying its value
	Getting ready
	How to do it…
	How it works…
	See also

	Selecting a control using the CSS class
	Getting ready
	How to do it…
	How it works…
	See also

	Selecting a control using HTML tag
	Getting ready
	How to do it…
	How it works…
	See also

	Selecting a control by its attribute
	Getting ready
	How to do it…
	How it works…
	See also

	Selecting an element by its position in the DOM
	Getting ready
	How to do it…
	How it works…
	See also

	Enabling/disabling controls on a web form
	Getting ready
	How to do it…
	How it works…
	See also

	Using selectors in MVC applications
	Getting ready
	How to do it…
	How it works…
	See also


	3. Event Handling Using jQuery
	Introduction
	jQuery event binders

	Responding to mouse events
	Getting ready
	How to do it…
	How it works…
	See also

	Responding to keyboard events
	Getting ready
	How to do it…
	How it works…
	See also

	Responding to form events
	Getting ready
	How to do it…
	How it works…
	See also

	Using event delegation to attach events to future controls
	Getting ready
	How to do it…
	How it works…
	See also

	Running an event only once
	Getting ready
	How to do it…
	How it works…
	See also

	Triggering an event programmatically
	Getting ready
	How to do it…
	How it works…
	See also

	Passing data with events and using event namespacing
	Getting ready
	How to do it…
	How it works…
	See also

	Detaching events
	Getting ready
	How to do it…
	How it works…
	See also


	4. DOM Traversal and Manipulation in ASP.NET
	Introduction
	Adding/removing DOM elements
	Getting ready
	How to do it…
	How it works…
	See also

	Accessing parent and child controls
	Getting ready
	How to do it…
	How it works…
	See also

	Accessing sibling controls
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Refining selection using a filter
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Adding items to controls at runtime
	Getting ready
	How to do it…
	How it works…
	See also


	5. Visual Effects in ASP.NET Sites
	Introduction
	Animating the Menu control
	Getting ready
	How to do it…
	How it works…
	See also

	Animating a Label control to create a digital clock
	Getting ready
	How to do it…
	How it works…
	See also

	Animating the alt text of the AdRotator control
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Animating images in the TreeView control
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating scrolling text in a Panel control
	Getting ready
	How to do it…
	How it works…
	See also

	Creating a vertical accordion menu using Panel controls
	Getting ready
	How to do it…
	How it works…
	See also

	Showing/hiding the GridView control with the explode effect
	Getting ready
	How to do it…
	How it works…
	See also


	6. Working with Graphics in ASP.NET Sites
	Introduction
	Creating a spotlight effect on images
	Getting ready
	How to do it…
	How it works…
	See also

	Zooming images on mouseover
	Getting ready
	How to do it…
	How it works…
	See also

	Creating an image scroller
	Getting ready
	How to do it…
	How it works…
	See also

	Building a photo gallery using z-index property
	Getting ready
	How to do it…
	How it works…
	See also

	Building a photo gallery using ImageMap control
	Getting ready
	How to do it…
	How it works…
	See also

	Using images to create effects in the Menu control
	Getting ready
	How to do it…
	How it works…
	See also

	Creating a 5 star rating control
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Previewing image uploads in MVC
	Getting ready
	How to do it…
	How it works…
	See also


	7. Ajax Using jQuery
	Introduction
	Setting up Ajax with ASP.NET using jQuery
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Consuming page methods
	Getting ready
	How to do it…
	How it works…
	See also

	Consuming Web services
	Getting ready
	How to do it…
	How it works…
	See also

	Consuming WCF services
	Getting ready
	How to do it…
	How it works…
	See also

	Retrieving data from a Web API
	Getting ready
	How to do it…
	How it works…
	See also

	Making Ajax calls to a controller action
	Getting ready
	How to do it…
	How it works…
	See also

	Making Ajax calls to a HTTP handler
	Getting ready
	How to do it…
	How it works…
	See also


	8. Creating and Using jQuery Plugins
	Introduction
	Creating and using a simple plugin
	Getting ready
	How to do it…
	How it works…
	See also

	Using the $ alias in the plugin
	Getting ready
	How to do it…
	How it works…
	There's more
	See also

	Calling methods on DOM elements
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Providing default values
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Providing method chaining
	Getting ready
	How to do it…
	How it works…
	See also

	Adding actions to plugins
	Getting ready
	How to do it…
	How it works…
	See also

	Using the form validation plugin
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Downloading plugins using the NPM
	Getting ready
	How to do it…
	How it works…
	See also


	Index


